24-Well Cell Invasion Assays, Basement Membrane

24-Well Cell Invasion Assays, Basement Membrane
  • Fully quantify cell invasion with no manual cell counting
  • Plate inserts are precoated with ECM basement membrane
  • Colorimetric or fluorometric quantitation

 

Frequently Asked Questions about this product

General FAQs about Cell Invasion Assays

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

CytoSelect™ 24-Well Cell Invasion Assay, Basement Membrane
Catalog Number
CBA-110
Size
12 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$560.00
CytoSelect™ 24-Well Cell Invasion Assay, Basement Membrane
Catalog Number
CBA-111
Size
12 assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$560.00
Product Details

The ability of malignant tumor cells to invade normal surrounding tissue contributes in large part to the morbidity and mortality of cancers. Cell invasion requires several distinct cellular functions including adhesion, motility, detachment, and extracellular matrix proteolysis.

Our CytoSelect™ Cell Invasion Assays utilize precoated inserts to assay the invasive properties of tumor cells. Invasive cells can be quantified in 24-well plates on either a standard microplate reader or a fluorescence plate reader. Inserts are precoated on the top of the membrane with ECM matrix gel (basement membrane), a protein mix isolated from EHS tumor cells.

CytoSelect™ Cell Invasion Assay Principle. Cell suspensions are placed on top of the gel matrix inside the upper chamber. After 24-48 hours, invasive cells move through the matrix and adhere to the bottom membrane of the insert. Non-invasive cells are then removed from the upper chamber, and invasive cells can be either stained and counted using a light microscope or quantified after extraction using a colorimetric or fluorometric plate reader.

Effects of Cytochalasin D on Invading Cells using the CytoSelect™ 24-Well Cell Invasion Assay. HT-1080 and NIH3T3 cells (negative control) were seeded at 300,000 cells/well and allowed to invade toward 10% FBS for 24 hrs in the presence or absence of 2µM Cytochalasin D. Invasive cells, on the bottom of the invasion membrane, were stained (above) and then quantified at OD 560 nm after extraction using a standard plate reader (not shown).

Recent Product Citations
  1. Nelczyk, A.T. et al. (2022). The nuclear receptor TLX (NR2E1) inhibits growth and progression of triple- negative breast cancer. Biochim Biophys Acta Mol Basis Dis. 1868(11):166515. doi: 10.1016/j.bbadis.2022.166515 (#CBA-111).
  2. Kahm, Y.J. et al. (2023). RanBP1: A Potential Therapeutic Target for Cancer Stem Cells in Lung Cancer and Glioma. Int J Mol Sci. 24(7):6855. doi: 10.3390/ijms24076855 (#CBA-110).
  3. Sugawara, S. et al. (2022). RNaseH2A downregulation drives inflammatory gene expression via genomic DNA fragmentation in senescent and cancer cells. Commun Biol. 5(1):1420. doi: 10.1038/s42003-022-04369-7 (#CBA-111).
  4. Houri, A. et al. (2023). Suprabasin enhances the invasion, migration, and angiogenic ability of oral squamous cell carcinoma cells under hypoxic conditions. Oncol Rep. 49(5):83. doi: 10.3892/or.2023.8520 (#CBA-110).
  5. Fan, Y. et al. (2023). hPSC-derived sacral neural crest enables rescue in a severe model of Hirschsprung's disease. Cell Stem Cell. 30(3):264-282.e9. doi: 10.1016/j.stem.2023.02.003 (#CBA-110).
  6. Garcia, J.A. et al. (2023). Acss2/HIF-2 signaling facilitates colon cancer growth and metastasis. PLoS One. 18(3):e0282223. doi: 10.1371/journal.pone.0282223 (#CBA-110).
  7. Nunomura, J. et al. (2022). Interleukin-1β triggers matrix metalloprotease-3 expression through p65/RelA activation in melanoma cells. PLoS One. 17(11):e0278220. doi: 10.1371/journal.pone.0278220 (#CBA-110).
  8. Mucha, B. et al. (2022). Tumor suppressor mediated ubiquitylation of hnRNPK is a barrier to oncogenic translation. Nat Commun. 13(1):6614. doi: 10.1038/s41467-022-34402-6 (#CBA-110).
  9. Polo-Generelo, S. et al. (2022). TGF-β-Upregulated Lnc-Nr6a1 Acts as a Reservoir of miR-181 and Mediates Assembly of a Glycolytic Complex. Noncoding RNA. 8(5):62. doi: 10.3390/ncrna8050062 (#CBA-110).
  10. Hino, S.I. et al. (2022). Suppression of HCT116 Human Colon Cancer Cell Motility by Polymethoxyflavones is Associated with Inhibition of Wnt/β-Catenin Signaling. Nutr Cancer. doi: 10.1080/01635581.2022.2084122 (#CBA-110).
  11. Feliz Morel, Á.J. et al. (2022). Persistent Properties of a Subpopulation of Cancer Cells Overexpressing the Hedgehog Receptor Patched. Pharmaceutics. 14(5):988. doi: 10.3390/pharmaceutics14050988 (#CBA-110).
  12. Ishihara, S. et al. (2022). The lactate sensor GPR81 regulates glycolysis and tumor growth of breast cancer. Sci Rep. 12(1):6261. doi: 10.1038/s41598-022-10143-w (#CBA-110).
  13. Haimovici, A. et al. (2022). Spontaneous activity of the mitochondrial apoptosis pathway drives chromosomal defects, the appearance of micronuclei and cancer metastasis through the Caspase-Activated DNAse. Cell Death Dis. 13(4):315. doi: 10.1038/s41419-022-04768-y (#CBA-110).
  14. Sato, N. et al. (2022). Tumor-suppressive role of Smad ubiquitination regulatory factor 2 in patients with colorectal cancer. Sci Rep. 12(1):5495. doi: 10.1038/s41598-022-09390-8 (#CBA-110).
  15. Pospiech, K. et al. (2022). TGFα-EGFR pathway in breast carcinogenesis, association with WWOX expression and estrogen activation. J Appl Genet. 63(2):339-359. doi: 10.1007/s13353-022-00690-3 (#CBA-110).
  16. Sato, N. et al. (2022). Yin Yang 1 regulates ITGAV and ITGB1, contributing to improved prognosis of colorectal cancer. Oncol Rep. 47(5):87. doi: 10.3892/or.2022.8298 (#CBA-110).
  17. Drury, J. et al. (2022). Upregulation of CD36, a Fatty Acid Translocase, Promotes Colorectal Cancer Metastasis by Increasing MMP28 and Decreasing E-Cadherin Expression. Cancers (Basel). 14(1):252. doi: 10.3390/cancers14010252 (#CBA-111).
  18. Park, J.S. et al. (2022). Gene Expression Analysis of Aggressive Adult Xp11.2 Translocation Renal Cell Carcinoma at Clinical Stage T1N0M0 to Identify Potential Prognostic and Therapeutic Biomarkers. Biomedicines. 10(2):321. doi: 10.3390/biomedicines10020321 (#CBA-110).
  19. Tai, Y.K. et al. (2022). Modulated TRPC1 Expression Predicts Sensitivity of Breast Cancer to Doxorubicin and Magnetic Field Therapy: Segue Towards a Precision Medicine Approach. Front Oncol. 11:783803. doi: 10.3389/fonc.2021.783803 (#CBA-110).
  20. Mori, T. et al. (2021). Enhancing the anticancer efficacy of a LL-37 peptide fragment analog using peptide-linked PLGA conjugate micelles in tumor cells. Int J Pharm. doi: 10.1016/j.ijpharm.2021.120891 (#CBA-111).
  21. Pavlova, O. et al. (2021). HOPX Exhibits Oncogenic Activity during Squamous Skin Carcinogenesis. J Invest Dermatol. doi: 10.1016/j.jid.2020.04.034 (#CBA-111).
  22. Song, J.H. et al. (2021). Noncoding RNA miR205HG Functions as an Esophageal Tumor-Suppressive Hedgehog Inhibitor. Cancers. 13(7):1707. doi: 10.3390/cancers13071707 (#CBA-111).
  23. Huang, J. et al. (2020). Identification of the fatty acid synthase interaction network via iTRAQ-based proteomics indicates the potential molecular mechanisms of liver cancer metastasis. Cancer Cell Int. 20:332. doi: 10.1186/s12935-020-01409-2 (#CBA-111).
  24. Katara, G.K. et al. (2019). Interleukin-22 promotes development of malignant lesions in a mouse model of spontaneous breast cancer. Mol Oncol. doi: 10.1002/1878-0261.12598 (#CBA-111).
  25. Millien, G. et al. (2018). ETS1 regulates Twist1 transcription in a Kras G12D /Lkb1-/- metastatic lung tumor model of non-small cell lung cancer. Clin Exp Metastasis. doi: 10.1007/s10585-018-9912-z (#CBA-111).
  26. Paluszczak, J., et al. (2017). Lichen-derived caperatic acid and physodic acid inhibit Wnt signaling in colorectal cancer cells. Mol Cell Biochem. 441:109–124. doi: 10.1007/s11010-017-3178-7 (#CBA-111).
  27. Steury, M. et al. (2017). G-protein-coupled receptor kinase-2 is a critical regulator of TNFα signaling in colon epithelial cells. Biochem. J. 474(14):2301-2313 (#CBA-111).
  28. Lopez-Campistrous, A. et al. (2016). PDGFRα regulates follicular cell differentiation driving treatment resistance and disease recurrence in papillary thyroid cancer. EBioMed. doi:10.1016/j.ebiom.2016.09.007 (#CBA-111).
  29. Engel, N. et al. (2016). Antitumor evaluation of two selected Pakistani plant extracts on human bone and breast cancer cell lines. BMC Complement Altern Med. doi:10.1186/s12906-016-1215-9 (#CBA-111).
  30. Almami, A. et al. (2016). ING3 is associated with increased cell invasion and lethal outcome in ERG-negative prostate cancer patients. Tumor Biol. doi:10.1007/s13277-016-4802-y (#CBA-111).