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CATALOG NUMBER: RTV-014   STORAGE: -20ºC 

 

QUANTITY AND CONCENTRATION: 10 µg at 0.25 µg/µL in TE 

 

Background 

Retroviruses are efficient tools for delivering heritable genes into the genome of dividing cells.  Cell 

Biolabs’ pMXs-IRES-Puro retroviral vector (also known as pMXs-IP) is based on Moloney murine 

leukemia virus (MMLV).  The vector provides the viral package signal, transcription and processing 

elements, and MCS for cloning of a target gene.  The viral env gene, produced by the package cell line, 

encodes the envelope protein, which determines the viral infectivity range.  Transfection into a package 

cell line produces high-titer, replication-incompetent viruses.  In addition to transfer and expression of 

exogenous genes in mammalian cells, recently, retroviruses have been used to express silencing RNAs 

(siRNA) to decrease the expression of target genes both in vitro and in vivo. 

 

The vector contains the ampicillin-resistance gene, MMLV LTRs, package signal and MCS for cloning of 

your gene of interest (Figure 1). 

 
Figure 1. Schematic representation of pMXs-IRES-Puro retroviral vector. 

 

MCS:   

• Enzyme Sites: 5’-BamHI, EcoRI, XhoI, NotI, SnaBI-3’ 

• MCS Sequence: 

TTAATTAAGGATCCCAGTGTGGTGGTACGGGAATTCCTGCAGGCCTCGAGGGCCGGC

GCGCCGCGGCCGCTACGTAAATT---IRES---puro--- 

 

Safety Consideration  

Remember that you will be working with samples containing infectious virus.  Follow the recommended 

NIH guidelines for all materials containing BSL-2 organisms.  Always wear gloves, use filtered tips and 

work under a biosafety hood. 
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License Information 

This product is licensed from the University of Tokyo. 

 

Warranty 
These products are warranted to perform as described in their labeling and in Cell Biolabs literature when used in accordance 

with their instructions.  THERE ARE NO WARRANTIES THAT EXTEND BEYOND THIS EXPRESSED WARRANTY 

AND CELL BIOLABS DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF 

FITNESS FOR PARTICULAR PURPOSE.  CELL BIOLABS’s sole obligation and purchaser’s exclusive remedy for breach 

of this warranty shall be, at the option of CELL BIOLABS, to repair or replace the products. In no event shall CELL 

BIOLABS be liable for any proximate, incidental or consequential damages in connection with the products. 
 

This product is for RESEARCH USE ONLY; not for use in diagnostic procedures. 
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Cell Biolabs, Inc. 

5628 Copley Drive 

San Diego, CA 92111 

Worldwide: +1 858 271-6500 

USA Toll-Free: 1-888-CBL-0505 

E-mail: tech@cellbiolabs.com  

www.cellbiolabs.com  
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