Product Manual

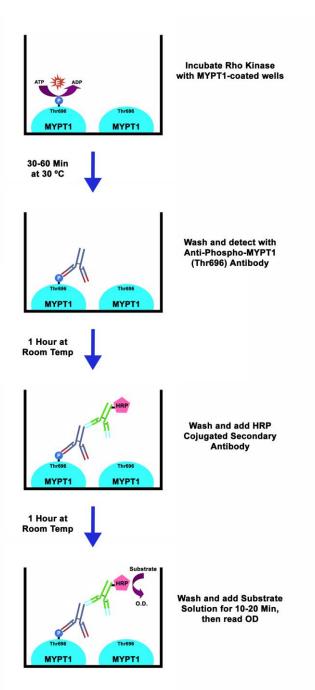
96-well ROCK Activity Assay Kit

Catalog Number

STA-416	96 assays
STA-416-5	5 x 96 assays

FOR RESEARCH USE ONLY Not for use in diagnostic procedures

Introduction


Members of the Rho family are essential regulatory components of the signaling pathway that direct cell motility, adhesion, and cytokinesis through reorganization of actin cytoskeleton. Rho is activated by extracellular signals such as lysophosphatidic acid (LPA). The actions of Rho are mediated by downstream Rho effectors. One of these effectors is Rho-associated kinase (ROCK). Two ROCK isoforms have been identified: ROCK-I (also known as ROK β) and ROCK-II (also known as Rho Kinase and ROK α). ROCK mediates Rho signaling and reorganizes actin cytoskeleton through phosphorylation of several substrates that contribute to the assembly of actin filaments and contractility. For example, ROCK inactivates myosin phosphatase through the specific phosphorylation of myosin phosphatase target subunit 1 (MYPT1) at Thr⁶⁹⁶, which results in an increase in the phosphorylated content of the 20-kDa myosin light chain (MLC20).

Cell Biolabs' 96-well ROCK Activity Assay Kit is an enzyme immunoassay developed for detection of the specific phosphorylation of MYPT1 at Thr⁶⁹⁶ by ROCK. A strip well microtiter plate is precoated with a recombinant MYPT1. After incubating the substrate wells with ROCK samples (such as purified kinase, cell or tissue lysate) the phosphorylated MYPT1 is detected by an anti-phospho-MYPT1 (Thr⁶⁹⁶) antibody (Figure 1).

Cell Biolabs' 96-well ROCK Activity Assay Kit provides a non-isotopic, sensitive and specific method to monitor ROCK activity using its physiological substrate; it can also be used in screening ROCK inhibitors. The kit has detection sensitivity limit of 200 pg of active ROCK-II. A recombinant active ROCK-II is also provided as a positive control. Each kit provides sufficient quantities to perform up to 96 assays.

Assay Principle

Related Products

- 1. STA-415: ROCK Activity Immunoblot Kit
- 2. STA-400: Ras Activation Assay Kit
- 3. STA-404: Rac/Cdc42 Activation Assay Combo Kit
- 4. STA-405: Rho/Rac/Cdc42 Activation Assay Combo Kit

5. STA-410: PAK1 PBD Agarose Beads

Kit Components

Box 1 (shipped at room temperature)

- 1. <u>ROCK Substrate Coated Plate</u> (Part No 241601): One strip well 96-well plate precoated with recombinant MYPT1
- <u>10X Kinase Buffer</u> (Part No. 241602): One 20 mL bottle of 250 mM Tris, pH 7.5, 100 mM MgCl2, 50 mM Glycerol-2-Phsophate, 1 mM Na3VO4
- 3. <u>ATP Solution</u> (Part No. 241604): One 100 µL vial Of 100 mM ATP
- 4. Anti-phospho-MYPT1 (Thr696) (Part No. 241603): One 20 µL vial
- 5. <u>Secondary Antibody, HRP Conjugate</u> (Part No. 231009): One 20 µL vial
- 6. Assay Diluent (Part No. 310804): One 50 mL bottle.
- 7. <u>10X Wash Buffer</u> (Part No. 310806): One 100 mL bottle
- 8. Substrate Solution (Part No. 310807): One 12 mL amber bottle
- 9. Stop Solution (Part. No. 310808): One 12 mL bottle

Box 2 (shipped on blue ice packs)

<u>Active ROCK-II</u> (Part No. 241505): One 20 μL vial containing 10 ng active ROCK-II in 25 mM Tris, pH 7.5, 10 mM MgCl₂, 5 mM Glycerol-2-Phosphate, 0.1 mM Na₃VO₄, 10% Glycerol, 0.1% BSA

Materials Not Supplied

- 1. ROCK sample (purified kinase, cell or tissue lysate)
- Lysis Buffer: 50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1 mM 2-glycerophosphate, 1 % Triton X-100 or 1 % Nonidet P-40, 1 mM EDTA, 1 mM EGTA, 1 mM Na₃VO₄ and Proteinase inhibitors.
- 3. DTT
- 4. 0.5 M EDTA
- 5. 30°C incubator or water bath
- 6. Microplate reader capable of reading at 450 nm (620 nm as optional reference wave length)

Storage

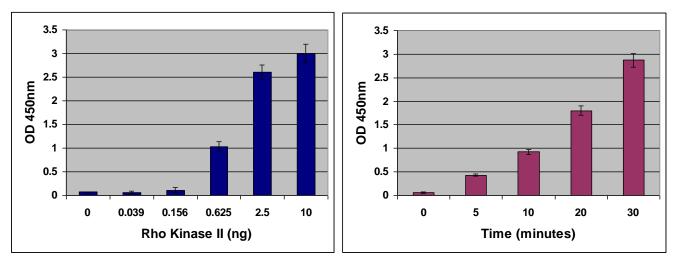
Store active ROCK-II at -80°C, ATP Solution at -20°C and all other kit components at 4°C. Avoid multiple freeze/thaw cycles.

Preparation of Reagents

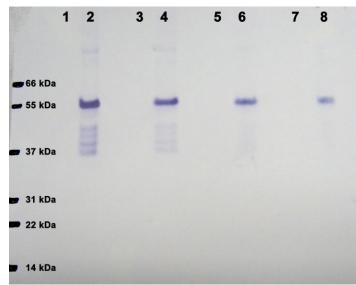
• 10X Kinase Reaction Buffer containing DTT and ATP: Just prior to usage, add DTT to a final concentration of 10 mM and ATP to a final concentration of 2 mM to the 10X Kinase Buffer. For

Example, add 10 μ L of 1M DTT (not provided) and 20 μ L of 100 mM ATP solution to 970 uL of 10X Kinase Buffer. 10X Kinase Reaction Buffer containing DTT and ATP may be stored at 4°C for short term (1-2 weeks).

- Diluted Active ROCK-II Positive Control: Just prior to usage, dilute the provided active ROCK-II (0.5 μ g/mL) to 0.02 μ g/mL with 1X Kinase Buffer. For example, add 8 μ L of the active ROCK-II and 20 μ L of 10X Kinase Buffer to 172 μ L deionized water.
- 1X Wash Buffer: Dilute the 10X Wash Buffer Concentrate to 1X with deionized water. Stir to homogeneity.
- Anti-Phospho-MYPT1 (Thr⁶⁹⁶) Antibody and HRP-Conjugated Secondary Antibody: Immediately before use dilute the anti-phospho-MYPT1 (Thr⁶⁹⁶) antibody 1:1000 and HRP-conjugated secondary antibody 1:1000 with Assay Diluent. Do not store diluted solutions.


Assay Protocol

- 1. Purified kinase or cell lysate sample can be used directly in the kinase assay or further diluted with 1X Kinase Buffer. Each sample should be assayed in duplicate.
- 2. Add 90 μ L of the diluted active ROCK-II positive control or unknown ROCK samples to the wells of the substrate plate.
- 3. Initiate the kinase reaction by adding 10 μ L of the 10X Kinase Reaction Buffer containing DTT and ATP. Mix well.
- 4. Cover with a plate cover and incubate the wells at 30°C for 30-60 minutes with gentle agitation.
- 5. Stop kinase reaction by flicking out the content or by adding 50 μ L of 0.5 M EDTA, pH 8.0, to each well.
- 6. Remove plate cover and empty wells. Wash microwell strips 3 times with 250 µL 1X Wash Buffer per well with thorough aspiration between each wash. After the last wash, empty wells and tap microwell strips on absorbent pad or paper towel to remove excess 1X Wash Buffer.
- 7. Add 100 μ L of the diluted anti-phospho-MYPT1 (Thr⁶⁹⁶) antibody to each well.
- 8. Cover with a plate cover and incubate at room temperature for 1 hour on an orbital shaker.
- 9. Remove plate cover and empty wells. Wash the strip wells 3 times according to step 6 above.
- 10. Add 100 µL of the diluted HRP-conjugated secondary antibody to each well.
- 11. Cover with a plate cover and incubate at room temperature for 1 hour on an orbital shaker.
- 12. Remove plate cover and empty wells. Wash microwell strips 3 times according to step 6 above. Proceed immediately to the next step.
- 13. Warm Substrate Solution to room temperature. Add 100 µL of Substrate Solution to each well, including the blank wells. Incubate at room temperature for 5-20 minutes on an orbital shaker.
- 14. Stop the enzyme reaction by adding 100 μ L of Stop Solution into each well, including the blank wells. Results should be read immediately (color will fade over time).
- 15. Read absorbance of each microwell on a spectrophotometer using 450 nm as the primary wave length.



Example of Results

The following figure demonstrates typical results seen with Cell Biolabs' 96-well ROCK Activity Assay Kit. One should use the data below for reference only.

Figure 1: ROCK-II Activity Assay. Left: Active ROCK-II was incubated for 60 minutes at 30°C. Right: 2.5 ng of active ROCK-II was incubated at 30°C for times as shown. Phosphorylation of MYPT1 substrate was detected by anti-phospho-MYPT1 (Thr⁶⁹⁶) antibody as described in Assay Protocol.

Figure 2: ROCK-II Activity Immunoblot Assay. 25 μ L of 1X Kinase Buffer containing 10 ng of active ROCK-II was incubated with 50 μ L of 1X Kinase Buffer containing 0.2 mM ATP and 500 ng of recombinant MYPT1 for 30 minutes at 30°C. Kinase reaction was stopped by adding 25 μ L of 4X SDS-PAGE Sample Buffer. Lane 1, 3, 5, 7: Without kinase (negative control); Lane 2, 4, 6, 8: with kinase. 200 ng (Lane 1 and 2), 100 ng (Lane 3 and 4), 50 ng (Lane 5 and 6) or 25 ng (Lane 7 and 8) of recombinant MYPT1 substrate were loaded onto SDS-PAGE. Phosphorylation of MYPT1 substrate was detected by anti-phospho-MYPT1 (Thr⁶⁹⁶) antibody as described in the Assay Protocol for Cat. # STA-415.

References

- 1. Etienne-Manneville, S., and Hall, A. (2002) *Nature* **420**, 629-635.
- 2. Riento, K., and Ridley, A. J. (2003) Nat. Rev. Mol. Cell. Biol. 4, 446-456.
- 3. Leung, T., Manser, E., Tan, L., and Lim, L. (1995) J. Biol. Chem. 270, 29051-29054.
- 4. Matsui, T., Amano, M., Yamamoto, T., Chihara, K., Nakafuku, M., Ito, M., Nakano, T., Okawa, K., Iwamatsu, A., and Kaibuchi, K. (1996) *EMBO J.* **15**, 2208-2216.
- 5. Totsukawa, G, et al., J. Cell Biol. (1999) 144, 735-744.

Recent Product Citations

- 1. Oh, M. et al. (2023). High extracellular glucose promotes cell motility by modulating cell deformability and contractility via cAMP-RhoA-ROCK axis in human breast cancer cells. *Mol Biol Cell*. doi: 10.1091/mbc.E22-12-0560.
- Tamura, E. et al. (2022). The First EGF Domain of Coagulation Factor IX Increases PAR1 Distributionin Lipid Rafts and Modulates the Response to Thrombin in Endothelial Cells. *Nihon Univ J Med.* 81(6):355-365. doi: 10.4264/numa.81.6_355.
- García-Morales, V. et al. (2021). Lysophosphatidic Acid and Several Neurotransmitters Converge on Rho-Kinase 2 Signaling to Manage Motoneuron Excitability. *Front. Mol. Neurosci.* doi: 10.3389/fnmol.2021.788039.
- 4. Okuyama, K. et al. (2021). Molecular mechanisms of cyclic phosphatidic acid-induced lymphangiogenic actions in vitro. *Microvasc Res.* **139**:104273. doi: 10.1016/j.mvr.2021.104273.
- 5. Demir, Y.D.Ş. et al. (2021). The implication of ROCK 2 as a potential senotherapeutic target via the suppression of the harmful effects of the SASP: Do senescent cancer cells really engulf the other cells? *Cell Signal*. doi: 10.1016/j.cellsig.2021.110007.
- 6. Ito, H. et al. (2020). Cigarette smoke induces endoplasmic reticulum stress and suppresses efferocytosis through the activation of RhoA. *Sci Rep.* **10**(1):12620. doi: 10.1038/s41598-020-69610-x.
- 7. Mu, X. et al. (2020). Cytoskeleton stiffness regulates cellular senescence and innate immune response in Hutchinson-Gilford Progeria Syndrome. *Aging Cell*. doi: 10.1111/acel.13152.
- 8. Lee, J.Y. et al. (2020). KD025 Shifts Pulmonary Endothelial Cell Bioenergetics and Decreases Baseline Lung Permeability. *Am J Respir Cell Mol Biol*. doi: 10.1165/rcmb.2019-0435OC.
- 9. Rodriguez-Perez, A.I. et al. (2019). Angiotensin type 2 receptors: Role in aging and neuroinflammation in the substantia nigra. *Brain Behav Immun*. pii: S0889-1591(19)31128-6. doi: 10.1016/j.bbi.2019.12.011.
- 10. Dupraz, S. et al. (2019). RhoA Controls Axon Extension Independent of Specification in the Developing Brain. *Curr Biol.* **29**(22):3874-3886.e9. doi: 10.1016/j.cub.2019.09.040.
- 11. Wu, Y. et al. (2019). BKCa compensates impaired coronary vasoreactivity through RhoA/ROCK pathway in hind-limb unweighted rats. *FASEB J*. doi: 10.1096/fj.201901273R.
- Nagai, Y. et al. (2019). ROCK2 regulates TGF-β-induced expression of CTGF and profibrotic genes via NF-κB and cytoskeleton dynamics in the mesangial cells. *Am J Physiol Renal Physiol*. doi: 10.1152/ajprenal.00596.2018.
- Song, J. et al. (2019). Inhibition of ROCK activity regulates the balance of Th1, Th17 and Treg cells in myasthenia gravis. *Clin Immunol*. pii: S1521-6616(19)30156-1. doi: 10.1016/j.clim.2019.05.006.
- Pitha, I. et al. (2018). Rho-Kinase Inhibition Reduces Myofibroblast Differentiation and Proliferation of Scleral Fibroblasts Induced by Transforming Growth Factor β and Experimental Glaucoma. *Transl Vis Sci Technol.* 7(6):6. doi: 10.1167/tvst.7.6.6.

- 15. Lim, I. et al. (2018). Altered ureteral contractility with ageing: Role of the rho-kinase pathway. *Mech Ageing Dev.* **171**:31-36. doi: 10.1016/j.mad.2018.03.004.
- 16. Gagliardi, P.A. et al. (2018). MRCKα is activated by caspase cleavage to assemble an apical actin ring for epithelial cell extrusion. *J Cell Biol.* **217**(1):231-249. doi: 10.1083/jcb.201703044.
- Yang, W. et al. (2017). Critical role of ROCK2 activity in facilitating mucosal CD4+ T cell activation in inflammatory bowel disease. *J Autoimmun*. 89:125-138. doi: 10.1016/j.jaut.2017.12.009.
- Yu, T. et al. (2017). Advanced Glycation End Products Impair Ca2+ Mobilization and Sensitization in Colonic Smooth Muscle Cells via the CAMP/PKA Pathway. *Cell Physiol Biochem.* 43(4):1571-1587. doi: 10.1159/000482005.
- 19. Kaplan, H.M., et al. (2017). Effect of Cigarette Smoke on Rhoa/Rho-Kinase Signalization Pathway in Lung. *Mustafa Kemal Üniv Tip Derg* 2017; **8**(30): 35-40.
- 20. Silveira, A.A.A., et al (2017). TNF induces neutrophil adhesion via formin-dependent cytoskeletal reorganization and activation of β-integrin function. *J Leukoc Biol*. pii: jlb.3A0916-388RR. doi: 10.1189/jlb.3A0916-388RR.
- 21. Burban, A. et al (2017). Penicillinase-resistant antibiotics induce non-immune-mediated cholestasis through HSP27 activation associated with PKC/P38 and PI3K/AKT signaling pathways. *Sci. Rep.* 7 (1):1815.
- Kaplan, H.M. et al. (2017). Effects of chronic Δ9-tetrahydrocannabinol treatment on Rho/Rhokinase signalization pathway in mouse brain. *Saudi Pharmaceut. J.* doi: 10.1016/j.jsps.2017.05.002.
- 23. Yan, S. et al. (2016). MMP inhibitor Ilomastat induced amoeboid-like motility via activation of the Rho signaling pathway in glioblastoma cells. *Tumor Biology* doi:10.1007/s13277-016-5464-5.
- 24. Rozo, C. et al. (2016). Targeting the RhoA-ROCK pathway to reverse T-cell dysfunction in SLE. *Ann. Rheum. Dis.* doi:10.1136/annrheumdis-2016-209850.
- 25. Munoz, A. et al. (2016). Aging-related increase in Rho kinase activity in the nigral region is counteracted by physical exercise. *J. Gerontol. A Biol. Sci. Med. Sci.* **71**:1257-1257.
- 26. Prysyazhna, O. et al. (2016). Phosphodiesterase 5 inhibition limits doxorubicin-induced heart failure by attenuating protein kinase G Iα oxidation. *J Biol Chem.* doi:10.1074/jbc.M116.724070.
- 27. El Azreq, M. A. et al. (2016). Discoidin domain receptor 1 promotes Th17 cell migration by activating the RhoA/ROCK/MAPK/ERK signaling pathway. *Oncotarget*.. doi:10.18632/oncotarget.10455.
- 28. Yang, C. et al. (2016). Adropin reduces paracellular permeability of rat brain endothelial cells exposed to ischemia-like conditions. *Peptides*. doi: 10.1016/j.peptides.2016.03.009.
- 29. Özdemir, A. et al. (2016). Cardiac glycoside-induced cell death and Rho/Rho kinase pathway: Implication of different regulation in cancer cell lines. *Steroids*. doi: 10.1016/j.steroids.2016.03.015.
- 30. Weng, C. H. et al. (2016). Cigarette smoke inhibits ROCK2 activation in T cells and modulates IL-22 production. *Mol Immunol.* **71**:115-122.

Warranty

These products are warranted to perform as described in their labeling and in Cell Biolabs literature when used in accordance with their instructions. THERE ARE NO WARRANTIES THAT EXTEND BEYOND THIS EXPRESSED WARRANTY AND CELL BIOLABS DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR PARTICULAR PURPOSE. CELL BIOLABS' sole obligation and purchaser's exclusive remedy for breach of this warranty shall be, at the option of CELL BIOLABS, to repair or replace the products.

In no event shall CELL BIOLABS be liable for any proximate, incidental or consequential damages in connection with the products.

Contact Information

Cell Biolabs, Inc. 7758 Arjons Drive San Diego, CA 92126 Worldwide: +1 858-271-6500 USA Toll-Free: 1-888-CBL-0505 E-mail: <u>tech@cellbiolabs.com</u> www.cellbiolabs.com

 \odot 2008-2024: Cell Biolabs, Inc. - All rights reserved. No part of these works may be reproduced in any form without permissions in writing.

