Catalase Activity Assays

Catalase Activity Assays
  • Quantify catalase activity in about 60 minutes
  • Suitable for use with plasma, serum, cell lysates or tissue homogenates
  • Catalase standard included for absolute quantitation


Frequently Asked Questions about this product

General FAQs about Oxidative Stress

Email To BuyerPrint this PageCopy Link

Please contact your distributor for pricing.

OxiSelect™ Catalase Activity Assay Kit, Colorimetric
Catalog Number
96 assays
Manual/Data Sheet Download
SDS Download
OxiSelect™ Catalase Activity Assay Kit, Fluorometric
Catalog Number
500 assays
Manual/Data Sheet Download
SDS Download
Product Details

Catalase is a ubiquitous enzyme that destroys hydrogen peroxides formed during oxidative stress. Our OxiSelect™ Catalase Activity Assay Kits measure catalase activity in less than one hour from a variety of samples including blood, cells and tissues.

Direct spectrophotometric detection of catalase activity with ultraviolet light can cause interference from proteins and other biological components. The OxiSelect™ Catalase Activity Assay Kit (Colorimetric) utilizes visible light (520 nm), which reduces sample interference.

The OxiSelect™ Catalase Activity Assay Kit (Fluorometric) provides a 40-fold increase in sensitivity compared to our colorimetric assay.

Standard Curve Generated with the OxiSelect™ Catalase Activity Assay, Fluorometric.

Recent Product Citations
  1. Thevanayagam, H. et al. (2022). Photoprotective Effects Of  Carrageenans Against UltravioletB-Induced Extracellular Matrix (ECM) Damage In Keratinocytes. Malaysian J. Sci. 41(3):28-37. doi: 10.22452/mjs.vol41no3.4 (#STA-341).
  2. Spooner, R.K. et al. (2022). Mitochondrial Redox Environments Predict Sensorimotor Brain-Behavior Dynamics in Adults with HIV. Brain Behav Immun. doi: 10.1016/j.bbi.2022.10.004 (#STA-341).
  3. Emam, K.K. et al. (2022). Assessment of Wheat Germ Oil Role in the Prevention of Induced Breast Cancer in Rats. ACS Omega. 7(16):13942-13952. doi: 10.1021/acsomega.2c00434 (#STA-341).
  4. Spooner, R.K. et al. (2021). Neural oscillatory activity serving sensorimotor control is predicted by superoxide-sensitive mitochondrial redox environments. Proc Natl Acad Sci U S A. 118(43):e2104569118. doi: 10.1073/pnas.2104569118 (#STA-341).
  5. Ying, K.E. et al. (2021). Cellular antioxidant mechanisms control immunoglobulin light chain-mediated proximal tubule injury. Free Radic Biol Med. 171:80-90. doi: 10.1016/j.freeradbiomed.2021.05.011 (#STA-339).
  6. Almarhoun, M. et al. (2021). Overexpression of STARD3 attenuates oxidized LDL-induced oxidative stress and inflammation in retinal pigment epithelial cells. Biochim Biophys Acta Mol Cell Biol Lipids. 1866(7):158927. doi: 10.1016/j.bbalip.2021.158927 (#STA-341).
  7. Alses, M. & Alzeer, S. (2021). Evaluation of some biological parameters of gasoline station attendants in Damascus, Syria. Heliyon. 7(5):e07056. doi: 10.1016/j.heliyon.2021.e07056 (#STA-341).
  8. Jankowski, J. et al. (2021). The effect of different dietary ratios of lysine, arginine and methionine on protein nitration and oxidation reactions in turkey tissues and DNA. Animal. doi: 10.1016/j.animal.2021.100183 (#STA-339).
  9. Nasef, A.N.Z. & Khateib, B.R.M. (2021). Study the Potential Therapeutic Effect of Garden Cress (Lepidiumsativum) on Nephropathy Diabetic Rats: Biological and Biochemical Studies. ASEJ. 42(2):263-272. doi: 10.21608/asejaiqjsae.2021.165932 (#STA-341).
  10. de Los Santos-Jiménez, J. et al. (2021). Glutaminase isoforms expression switches microRNA levels and oxidative status in glioblastoma cells. J Biomed Sci. 28(1):14. doi: 10.1186/s12929-021-00712-y (#STA-341).
  11. Ra, K. et al. (2021). Comparison of Anti-Oxidative Effect of Human Adipose- and Amniotic Membrane-Derived Mesenchymal Stem Cell Conditioned Medium on Mouse Preimplantation Embryo Development. Antioxidants (Basel). 10(2):268. doi: 10.3390/antiox10020268 (#STA-341).
  12. Hwang, D.K. et al. (2020). Changes in the Systemic Expression of Sirtuin-1 and Oxidative Stress after Intravitreal Anti-Vascular Endothelial Growth Factor in Patients with Retinal Vein Occlusion. Biomolecules. 10(10):1414. doi: 10.3390/biom10101414 (#STA-341).
  13. Wake, H. et al. (2020). Histidine-rich glycoprotein possesses anti-oxidant activity through self-oxidation and inhibition of hydroxyl radical production via chelating divalent metal ions in Fenton's reaction. Free Radic Res. doi: 10.1080/10715762.2020.1825703 (#STA-341).
  14. Kim, J.H. et al. (2020). Comparison of toxic effects of dietary organic or inorganic selenium and prediction of selenium intake and tissue selenium concentrations in broiler chickens using feather selenium concentrations. Poult Sci. doi: 10.1016/j.psj.2020.08.061 (#STA-341).
  15. Marín-Echeverri,C. et al. (2020). Differential Effects of Agraz (Vaccinium meridionale Swartz) Consumption in Overweight and Obese Women with Metabolic Syndrome. Journal of Food and Nutrition Research. 8(8):399-409. doi: 10.12691/jfnr-8-8-3 (#STA-341).
  16. Yu, Y.B. et al. (2020). Effects of dietary ascorbic acid on growth performance, hematological parameters, antioxidant and non-specific immune responses in starry flounder, Platichthys stellatus. Aquac Rep. doi: 10.1016/j.aqrep.2020.100419 (#STA-341).
  17. Yıldız, A. et al. (2020). Ozone treatment for high-dose systemic Steroid-Induced retinal injury. Cutan Ocul Toxicol. doi: 10.1080/15569527.2020.1790590 (#STA-341).
  18. Wang, X. et al. (2020). Upregulation of microRNA-200a in bone marrow mesenchymal stem cells enhances the repair of spinal cord injury in rats by reducing oxidative stress and regulating Keap1/Nrf2 pathway. Artif Organs. doi: 10.1111/aor.13656 (#STA-341).
  19. Akman, T. et al. (2020). The ameliorative effect of ozone therapy on spinal cord ischemia in rabbits. Ann Clin Anal Med. 11(3):221-226. doi: 10.4328/ACAM.6215 (#STA-341).
  20. Nam, W. et al. (2020). Lactobacillus HY2782 and Bifidobacterium HY8002 Decrease Airway Hyperresponsiveness Induced by Chronic PM2.5 Inhalation in Mice. J Med Food. doi: 10.1089/jmf.2019.4604 (#STA-341).
  21. Malçok, Ü.A. et al. (2020). Therapeutic effects of syringaldehyde on spinal cord ischemia in rabbits. Saudi Med J. 41(4):341-350. doi: 10.15537/smj.2020.4.24993 (#STA-341).
  22. Haldar, S. et al. (2020). Cancer epithelia-derived mitochondrial DNA is a targetable initiator of a paracrine signaling loop that confers taxane resistance. Proc Natl Acad Sci U S A. pii: 201910952. doi: 10.1073/pnas.1910952117 (#STA-341).
  23. Iqbal, S. et al. (2019). Antioxidant Enzymes Profile During Cryopreservation of Nili Ravi Buffalo Bull Spermatozoa (Bubalus Bubalis). The J. Anim. Plant Sci. 29(6):2019 (#STA-339).
  24. Aspera-Werz, R.H. et al. (2018). Nicotine and Cotinine Inhibit Catalase and Glutathione Reductase Activity Contributing to the Impaired Osteogenesis of SCP-1 Cells Exposed to Cigarette Smoke. Oxid Med Cell Longev. 2018:3172480. doi: 10.1155/2018/3172480 (#STA-339).
  25. du Plooy, C. S. et al. (2016). The association of endothelin-1 with markers of oxidative stress in a biethnic South African cohort: the SABPA study. Hypertens Res. doi:10.1038/hr.2016.128 (#STA-339).
  26. van Zyl, C. et al. (2016). Antioxidant enzyme activity is associated with blood pressure and carotid intima media thickness in black men and women: The SABPA study. Atherosclerosis. 248:91-96 (#STA-339).
  27. Mels, C. M. et al. (2016). The relationship of nitric oxide synthesis capacity, oxidative stress, and albumin-to-creatinine ratio in black and white men: the SABPA study. AGE. 38:1-11 (#STA-339).
  28. Iqbal, S. et al. (2016). l-Cysteine improves antioxidant enzyme activity, post-thaw quality and fertility of Nili-Ravi buffalo (Bubalus bubalis) bull spermatozoa. Andrologia. doi:10.1111/and.12520 (#STA-339).
  29. Yang, W. et al. (2015).AGE-dependent changes of the antioxidant system in rat livers are accompanied by altered MAPK activation and a decline in motor signaling. EXCLI J. 4:1273-1290 (#STA-339).
  30. Iqbal, S. et al. (2015). Trehalose improves semen antioxidant enzymes activity, post-thaw quality, and fertility in Nili Ravi buffaloes (Bubalus bubalis). Theriogenology doi:10.1016/j.theriogenology.2015.11.004 (#STA-339).