Protein Carbonyl Fluorometric Assay

Protein Carbonyl Fluorometric Assay
  • Detect protein carbonyl formation by fluorescent microplate reader
  • Suitable for plasma, serum, urine, cell lysates or purified proteins
Email To BuyerPrint this PageCopy Link

Please contact your distributor for pricing.

OxiSelect™ Protein Carbonyl Fluorometric Assay
Catalog Number
100 assays
Manual/Data Sheet Download
SDS Download
Product Details

The most common products of protein oxidation in biological samples are the carbonyl derivatives of proline, lysine, arginine and threonine residues. Such derivatives are chemically stable and serve as markers for oxidative stress in most types of reactive oxygen species.

Our OxiSelect™ Protein Carbonyl Fluorometric Assay Kit provides a rapid, efficient method for the detection of protein carbonyl residues. The fluorescence plate-based format provides a convenient system for direct measurement of protein carbonyl content.

Recent Product Citations
  1. Dos Anjos, C. et al. (2023). New Insights into the Bacterial Targets of Antimicrobial Blue Light. Microbiol Spectr. 11(2):e0283322. doi: 10.1128/spectrum.02833-22. 
  2. Gudiksen, A. et al. (2021). Ameliorating effects of lifelong physical activity on healthy aging and mitochondrial function in human white adipose tissue. J Gerontol A Biol Sci Med Sci. doi: 10.1093/gerona/glab356.
  3. Nukala, S.B. et al. (2021). Protein network analyses of pulmonary endothelial cells in chronic thromboembolic pulmonary hypertension. Sci Rep. 11(1):5583. doi: 10.1038/s41598-021-85004-z.
  4. de Los Santos-Jiménez, J. et al. (2021). Glutaminase isoforms expression switches microRNA levels and oxidative status in glioblastoma cells. J Biomed Sci. 28(1):14. doi: 10.1186/s12929-021-00712-y.
  5. Christiansen, L.B. et al. (2021). Atorvastatin impairs liver mitochondrial function in obese Göttingen Minipigs but heart and skeletal muscle are not affected. Sci Rep. 11(1):2167. doi: 10.1038/s41598-021-81846-9.
  6. Wake, H. et al. (2020). Histidine-rich glycoprotein possesses anti-oxidant activity through self-oxidation and inhibition of hydroxyl radical production via chelating divalent metal ions in Fenton's reaction. Free Radic Res. doi: 10.1080/10715762.2020.1825703. 
  7. Kim, T. et al. (2020). Cupric ion in combination with hydrogen peroxide and hydroxylamine applied to inactivation of different microorganisms. J Hazard Mater. doi: 10.1016/j.jhazmat.2020.123305.
  8. Sambon, M. et al. (2020). Dibenzoylthiamine Has Powerful Antioxidant and Anti-Inflammatory Properties in Cultured Cells and in Mouse Models of Stress and Neurodegeneration. Biomedicines. 8(9):E361. doi: 10.3390/biomedicines8090361.
  9. Buch, B.T. et al. (2020). Colchicine treatment impairs skeletal muscle mitochondrial function and insulin sensitivity in an age-specific manner. FASEB J. doi: 10.1096/fj.201903113RR.
  10. Pavlov, D. et al. (2020). Enhanced conditioning of adverse memories in the mouse modified swim test is associated with neuroinflammatory changes - effects that are susceptible to antidepressants. Neurobiol Learn Mem. doi: 10.1016/j.nlm.2020.107227.
  11. Gorlova, A. et al. (2019). Alteration of oxidative stress markers and behavior of rats in a novel model of depression. Acta Neurobiol Exp (Wars). 79(3):232-237. doi: 10.21307/ane‑2019‑021.
  12. Halling, J.F. et al. (2019). PGC-1α regulates mitochondrial properties beyond biogenesis with aging and exercise training. Am J Physiol Endocrinol Metab. doi: 10.1152/ajpendo.00059.2019.
  13. Tiwari, M. K. et al. (2019). Copper ion / H2O2 oxidation of Cu/Zn-Superoxide dismutase: Implications for enzymatic activity and antioxidant action. Redox Biology. doi: 10.1016/j.redox.2019.101262.
  14. Sambon, M. et al. (2019). Thiamine and benfotiamine protect neuroblastoma cells against paraquat and β-amyloid toxicity by a coenzyme-independent mechanism. Heliyon. 5(5), e01710. doi:10.1016/j.heliyon.2019.e01710.
  15. Gorlova, A. et al. (2019). Thiamine and benfotiamine counteract ultrasound-induced aggression, normalize AMPA receptor expression and plasticity markers, and reduce oxidative stress in mice. Neuropharmacology. pii: S0028-3908(19)30058-9. doi: 10.1016/j.neuropharm.2019.02.025.
  16. Naparlo, K. et al. (2019). Flavanols protect the yeast Saccharomyces cerevisiae against heating and freezing/thawing injury. J Appl Microbiol. 126(3):872-880. doi: 10.1111/jam.14170.
  17. Frontiñán-Rubio, J. et al. (2018). Sex-dependent co-occurrence of hypoxia and β-amyloid plaques in hippocampus and entorhinal cortex is reversed by long-term treatment with ubiquinol and ascorbic acid in the 3 × Tg-AD mouse model of Alzheimer's disease. Mol Cell Neurosci. 92:67-81. doi: 10.1016/j.mcn.2018.06.005.
  18. Yeh, A. et al. (2017). Effect of contaminants of emerging concern on liver mitochondrial function in Chinook salmon. Aquat. Toxicol. 190:21-31.
  19. Tangtrongsup, S. et al. (2017). Modulating the oxidative environment during mesenchymal stem cells chondrogenesis with serum increases collagen accumulation in agarose culture. J. Orthop. Res. doi: 10.1002/jor.23618.
  20. Adamczyk-Sowa, M. et al. (2017). Oxidative modifications of blood serum proteins in myasthenia gravis. Journal of Neuroimmunology. doi: 10.1016/j.jneuroim.2017.01.019.
  21. Rey, B. et al. (2016). Hormetic response triggers multifaceted anti-oxidant strategies in immature king penguins (Aptenodytes patagonicus). Free Radic Biol Med. doi:10.1016/j.freeradbiomed.2016.07.015.
  22. Li-Byarlay, H. et al. (2016). Honey bee (Apis mellifera) drones survive oxidative stress due to increased tolerance instead of avoidance or repair of oxidative damage. Exp Gerontol. doi:10.1016/j.exger.2016.07.003.
  23. Maslanka, R. et al. (2016). The effect of berry juices on the level of oxidative stress in yeast cells exposed to acrylamide. J Food Biochem. doi:10.1111/jfbc.12260.
  24. Lauritzen, K. H. et al. (2015). Impaired dynamics and function of mitochondria caused by mtDNA toxicity leads to heart failure. Am J Physiol Heart Circ Physiol309:H434-H449.
  25. Sadowska-Bartosz, I. & Bartosz, G. (2015). Ascorbic acid and protein glycation in vitro. Chem Biol Interact. doi: 10.1016/j.cbi.2015.07.006.
  26. Zabala, V. et al. (2015). Potential contributions of the tobacco nicotine-derived nitrosamine ketone (NNK) in thepathogenesis of steatohepatitis in a chronic plus binge rat model of alcoholic liver disease. Alcohol Alcohol.doi:
  27. Tong, M. et al. (2014). Therapeutic reversal of chronic alcohol‐related steatohepatitis with the ceramide inhibitor myriocinInt J Exp Pathol. 95:49-63.
  28. Rey, B. et al. (2014). Thyroid status affects membranes susceptibility to free radicals and oxidative balance in skeletal muscle of Muscovy ducklings (Cairina moschata). J Exp Zool A Ecol Genet Physiol. 321:415-421.