Tumor Sensitivity Assay

Tumor Sensitivity Assay
  • Screen for effects of anticancer compounds
  • Uses traditional 3D soft agar matrix
  • Fully quantify tumor sensitivity with no manual cell counting
  • Results in 6-8 days, not 3 weeks

 

Frequently Asked Questions about this product

General FAQs about Cell Transformation Assays

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

CytoSelect™ 96-Well In Vitro Tumor Sensitivity Assay
Catalog Number
CBA-150
Size
96 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$695.00
CytoSelect™ 96-Well In Vitro Tumor Sensitivity Assay
Catalog Number
CBA-150-5
Size
5 x 96 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$3,040.00
Product Details

Traditionally, the soft agar colony formation assay has been used to monitor anchorage-independent growth. Cells proliferate for 3-4 weeks in a semisolid culture medium, followed by tedious manual counting of colonies.

Our CytoSelect™ 96-Well In Vitro Tumor Sensitivity Assay provides a stringent, anchorage-independent model for chemosenstivity testing and screening of potential anticancer drugs. After just 6-8 days, cell colonies are quantified using a standard colorimetric microplate reader.

CytoSelect™ 96-Well In Vitro Tumor Sensitivity Assay Principle.

Inhibition of HeLa Cell Anchorage-Independent Growth by Taxol. HeLa cells were cultured for 7 days in the absence (top) or presence (bottom) of 1 nM Taxol according to the assay protocol.

Recent Product Citations
  1. Nakamura D. (2023). The evaluation of tumorigenicity and characterization of colonies in a soft agar colony formation assay using polymerase chain reaction. Sci Rep. 13(1):5405. doi: 10.1038/s41598-023-32442-6.
  2. Chandrasekaran, B. et al. (2023). Antiandrogen-Equipped Histone Deacetylase Inhibitors Selectively Inhibit Androgen Receptor (AR) and AR-Splice Variant (AR-SV) in Castration-Resistant Prostate Cancer (CRPC). Cancers (Basel). 15(6):1769. doi: 10.3390/cancers15061769.
  3. Nakachi, S. et al. (2022). Impact of anti-diabetic sodium-glucose cotransporter 2 inhibitors on tumor growth of intractable hematological malignancy in humans. Biomed Pharmacother. doi: 10.1016/j.biopha.2022.112864.
  4. Katayama, Y. et al. (2022). Heterogeneity among tumors with acquired resistance to EGFR tyrosine kinase inhibitors harboring EGFR-T790M mutation in non-small cell lung cancer cells. Cancer Med. doi: 10.1002/cam4.4504.
  5. Xie, X. et al. (2021). Babao Dan is a robust anti-tumor agent via inhibiting wnt/β-catenin activation and cancer cell stemness. J Ethnopharmacol. doi: 10.1016/j.jep.2021.114449.
  6. Dehghanian, S.Z. et al. (2021). ABT-751 Induces Multiple Anticancer Effects in Urinary Bladder Urothelial Carcinoma-Derived Cells: Highlighting the Induction of Cytostasis through the Inhibition of SKP2 at Both Transcriptional and Post-Translational Levels. Int J Mol Sci. 22(2):945. doi: 10.3390/ijms22020945.
  7. Fujimura, T. et al. (2020). Enhanced antitumor effect of alectinib in combination with cyclin-dependent kinase 4/6 inhibitor against RET-fusion-positive non-small cell lung cancer cells. Cancer Biol Ther. doi: 10.1080/15384047.2020.1806643.
  8. Chandrasekaran, B. et al. (2020). Chronic exposure to cadmium induces a malignant transformation of benign prostate epithelial cells. Oncogenesis. 9(2):23. doi: 10.1038/s41389-020-0202-7.
  9. Tyagi, A. et al. (2019). Combination of androgen receptor inhibitor and cisplatin, an effective treatment strategy for urothelial carcinoma of the bladder. Urol Oncol. pii: S1078-1439(19)30101-2. doi: 10.1016/j.urolonc.2019.03.008.
  10. Wei, R.J. et al. (2019). Inhibition of the formation of autophagosome but not autolysosome augments ABT-751-induced apoptosis in TP53-deficient Hep-3B cells. J Cell Physiol. 234(6):9551-9563. doi: 10.1002/jcp.27643.
  11. Wang, L. et al. (2018). Effects of ebv-miR-BART7 on tumorigenicity, metastasis, and TRAIL sensitivity of non-small cell lung cancer. J Cell Biochem. doi: 10.1002/jcb.28289.
  12. von Frowein, J. et al. (2018). MiR-492 regulates metastatic properties of hepatoblastoma via CD44. Liver Int. 38(7):1280-1291. doi: 10.1111/liv.13687.
  13. Pal, D. et al. (2018). Suppression of Notch1 and AKT mediated epithelial to mesenchymal transition by Verrucarin J in metastatic colon cancer. Cell Death Dis. 9(8):798. doi: 10.1038/s41419-018-0810-8.
  14. Chandrasekaran, B. et al. (2017). Molecular insights: Suppression of EGFR and AKT activation by a small molecule in non-small cell lung cancer. Genes Cancer. 8(9-10):713-724. doi: 10.18632/genesandcancer.154.
  15. Pal, D. et al. (2017). Inhibition of autophagy prevents cadmium-induced prostate carcinogenesis. Br. J. Cancer. 117(1):56-64. doi: 10.1038/bjc.2017.143.
  16. Kato, K. et al. (2017). Opposite effects of tumor protein D (TPD) 52 and TPD54 on oral squamous cell carcinoma cells. Int J Oncol. doi: 10.3892/ijo.2017.3929
  17. Wei, R. J. et al. (2016). A microtubule inhibitor, ABT-751, induces autophagy and delays apoptosis in Huh-7 cells. Toxicol. Appl Pharmacol. doi:10.1016/j.taap.2016.09.021.
  18. Mukudai, Y. et al. (2016). Methanol and butanol extracts of Paeonia lutea leaves repress metastasis of squamous cell carcinoma. Evid Based Complement Alternat Med. doi:10.1155/2016/6087213.
  19. Damodaran, C. et al. (2016). miR-301a expression: A prognostic marker for prostate cancer. Urol Oncol. Doi:10.1016/j.urolonc.2016.03.009.
  20. Zheng, Y. et al. (2016). Glioma-derived platelet-derived growth factor-BB recruits oligodendrocyte progenitor cells via platelet-derived growth factor receptor-α and remodels cancer stroma. Am J Pathol. doi:10.1016/j.ajpath.2015.12.020.
  21. Joshi, P. et al. (2015). MicroRNA-148a reduces tumorigenesis and increases TRAIL-induced apoptosis in NSCLC.  Proc Natl Acad Sci U S A112:8650-8655.
  22. Meador, C. B. et al. (2015). Optimizing the sequence of anti-EGFR-targeted therapy in EGFR-mutant lung cancer. Mol Cancer Ther. 14:542-552.
  23. Peng, Y. T. et al. (2015). Upregulation of cyclin-dependent kinase inhibitors CDKN1B and CDKN1 C in hepatocellular carcinoma-derived cells via goniothalamin-mediated protein stabilization and epigenetic modifications. Toxicol Rep. doi:10.1016/j.toxrep.2015.01.010.
  24. Akl, M. R. et al. (2015). Araguspongine C induces autophagic death in breast cancer cells through suppression of c-Met and HER2 receptor tyrosine kinase signaling. Mar Drugs. 13:288-311.
  25. Suman, S. et al. (2014). The pro-apoptotic role of autophagy in breast cancer. Bri J Cancer. 111:309-317.
  26. Suman, S. et al. (2014). Activation of AKT signaling promotes epithelial–mesenchymal transition and tumor growth in colorectal cancer cells. Mol Carcinog. 53:E151-E160.
  27. Bard-Chapeau, E. et al. (2013). EVI1 Oncoprotein Interacts with a Large and Complex Network of Proteins and Integrates Signals through Protein Phosphorylation. PNAS. 110:E2885-E2894.
  28. Takezawa. K. et al. (2012). HER2 Amplification: A Potential Mechanism of Acquired Resistance to EGFR Inhibition in EGFR-Mutant Lung Cancers That Lack the Second-Site EGFRT790M Mutation. Cancer Discovery. 2: 922-933.
  29. Li, C. et al. (2012).The Root Bark of Paeonia moutan is a Potential Anticancer Agent in Human Oral Squamous Cell Carcinoma Cells. Anticancer Res. 32:2625-2630.
  30. Itamochi, H. et al. (2011). Inhibiting the mTOR Pathway Synergistically Enhances Cytotoxicity in Ovarian Cancer Cells Induced by Etoposide through Upregulation of c-Jun. Clin. Cancer Res. 17:4742-4750.