Hydroxyl Radical Antioxidant Capacity (HORAC) Assay

Hydroxyl Radical Antioxidant Capacity (HORAC) Assay
  • Obtain results in less than 2 hours
  • Suitable for use with plasma, cell fractions, tissue lysates, solid and aqueous nutrition samples
  • Antioxidant standard included

 

Frequently Asked Questions about this product

General FAQs about Oxidative Stress

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

OxiSelect™ HORAC Activity Assay Kit
Catalog Number
STA-346
Size
192 assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$535.00
OxiSelect™ HORAC Activity Assay Kit
Catalog Number
STA-346-5
Size
5 x 192 assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$2,265.00
Product Details

The HORAC assay is a powerful tool to measure the antioxidant capacity of biomolecules. Our OxiSelect™ HORAC Activity Assay measures the degradation of free hydroxyl radicals in less than 2 hours from a wide variety of sample types.

Assay Principle for the OxiSelect™ HORAC Activity Assay. Please see product manual for detailed calculations.

Recent Product Citations
  1. Owens, C.D. et al. (2023). Vascular mechanisms leading to progression of mild cognitive impairment to dementia after COVID-19: Protocol and methodology of a prospective longitudinal observational study. PLoS One. 18(8):e0289508. doi: 10.1371/journal.pone.0289508.
  2. Xu, C. et al. (2022). Arthritic Microenvironment Actuated Nanomotors for Active Rheumatoid Arthritis Therapy. Adv Sci (Weinh). doi: 10.1002/advs.202204881.
  3. Abe-Yutori, M. et al. (2022). Allantoin, dipotassium glycyrrhizinate, and azulene sulfonate sodium hydrate inhibit gingival inflammation induced by advanced glycation end products via antiglycation effects in vitro. Nihon Shishubyo Gakkai Kaishi. 64(1):25-35. doi: 10.2329/perio.64.25.
  4. Kassem, S. et al. (2022). In vivo study of dose-dependent antioxidant efficacy of functionalized core-shell yttrium oxide nanoparticles. Naunyn Schmiedebergs Arch Pharmacol. doi: 10.1007/s00210-022-02219-1.
  5. Sun, W. et al. (2022). Self-oxygenation mesoporous MnO2 nanoparticles with ultra-high drug loading capacity for targeted arteriosclerosis therapy. J Nanobiotechnology. 20(1):88. doi: 10.1186/s12951-022-01296-x.
  6. Kim, J. et al. (2021). Ultrasmall Antioxidant Cerium Oxide Nanoparticles for Regulation of Acute Inflammation. ACS Appl Mater Interfaces. doi: 10.1021/acsami.1c16126.
  7. Ansar, M. et al. (2021). Lack of Type I Interferon Signaling Ameliorates Respiratory Syncytial Virus-Induced Lung Inflammation and Restores Antioxidant Defenses. Antioxidants (Basel). 11(1):67. doi: 10.3390/antiox11010067.
  8. Ishihara, K. et al. (2021). Isolation of Balenine from Opah (Lampris megalopsis) Muscle and Comparison of Antioxidant and Iron-chelating Activities with Other Major Imidazole Dipeptides. Food Chem. doi: 10.1016/j.foodchem.2021.130343.
  9. Zhang, X. et al. (2021). Antioxidant and C5a-blocking strategy for hepatic ischemia-reperfusion injury repair. J Nanobiotechnology. 19(1):107. doi: 10.1186/s12951-021-00858-9.
  10. Zhang, D.Y. et al. (2020). Ultrasmall Platinum Nanozymes as Broad-Spectrum Antioxidants for Theranostic Application in Acute Kidney Injury. Chem. Eng. J. doi: 10.1016/j.cej.2020.127371.
  11. Wake, H. et al. (2020). Histidine-rich glycoprotein possesses anti-oxidant activity through self-oxidation and inhibition of hydroxyl radical production via chelating divalent metal ions in Fenton's reaction. Free Radic Res. doi: 10.1080/10715762.2020.1825703.
  12. Rosenkrans, Z.T. et al. (2020). Selenium‐Doped Carbon Quantum Dots Act as Broad‐Spectrum Antioxidants for Acute Kidney Injury Management. Adv. Sci. doi: 10.1002/advs.202000420.
  13. Pham, T.N.M. et al. (2020). Protective Mechanisms of Avocado Oil Extract Against Ototoxicity. Nutrients. 12(4). pii: E947. doi: 10.3390/nu12040947.
  14. Ansar, M. et al. (2020). Increased Lung Catalase Activity Confers Protection Against Experimental RSV Infection. Sci Rep. 10(1):3653. doi: 10.1038/s41598-020-60443-2.
  15. Xin, H. et al. (2019).  Attenuated glutamate induced ROS production by antioxidative compounds in neural cell lines. RSC Adv. 9:34735–34743. doi: 10.1039/c9ra03848e.
  16. Li, S. et al. (2019). Intrathecal Administration of Nanoclusters for Protecting Neurons against Oxidative Stress in Cerebral Ischemia/Reperfusion Injury. ACS Nano. doi: 10.1021/acsnano.9b06780.
  17. Choi, B. et al. (2019). Highly selective microglial uptake of ceria-zirconia nanoparticles for enhanced analgesic treatment of neuropathic pain. Nanoscale. doi: 10.1039/c9nr02648g.
  18. Gardner, A.W. et al. (2019). Vascular Inflammation, Calf Muscle Oxygen Saturation, and Blood Glucose are Associated With Exercise Pressor Response in Symptomatic Peripheral Artery Disease. Angiology. 3319719838399. doi: 10.1177/0003319719838399.
  19. Gardner, A.W. et al. (2019). Changes in vascular and inflammatory biomarkers after exercise rehabilitation in patients with symptomatic peripheral artery disease. J Vasc Surg. pii: S0741-5214(19)30222-8. doi: 10.1016/j.jvs.2018.12.056.
  20. Jiang, D. et al. (2018). DNA origami nanostructures can exhibit preferential renal uptake and alleviate acute kidney injury. Nat Biomed Eng. 2(11):865-877. doi: 10.1038/s41551-018-0317-8.
  21. Ni, D. et al. (2018). Molybdenum-based nanoclusters act as antioxidants and ameliorate acute kidney injury in mice. Nat Commun. 9(1):5421. doi: 10.1038/s41467-018-07890-8.
  22. Ortecho-Zuta, U. et al. (2018). Effects of Enzymatic Activation of Bleaching Gels on Hydrogen Peroxide Degradation Rates, Bleaching Effectiveness, and Cytotoxicity. Oper Dent. doi: 10.2341/17-276-L.
  23. Gregory Rivera, M. et al. (2018). Peptide Inhibitor of Complement C1 (PIC1) demonstrates antioxidant activity via single electron transport (SET) and hydrogen atom transfer (HAT). PLoS One. 13(3):e0193931. doi: 10.1371/journal.pone.0193931.
  24. Molinari, R. et al. (2018). Tartary buckwheat malt as ingredient of gluten-free cookies. Journal of Cereal Science. 80:37-43. doi: 10.1016/j.jcs.2017.11.011.
  25. Oraby, H.F. et al. (2017). Changes in the concentration of avenanthramides in response to salinity stress in CBF 3 transgenic oat. J. Cereal Sci. doi: 10.1016/j.jcs.2017.06.010.
  26. Gardner, A.W. et al. (2017). Association between daily walking and antioxidant capacity in patients with symptomatic peripheral artery disease. J Vasc Surg. pii: S0741-5214(17)30098-8. doi: 10.1016/j.jvs.2016.12.108.
  27. Gardner, A. W. et al. (2016). Association between gait characteristics and endothelial oxidative stress and inflammation in patients with symptomatic peripheral artery disease. AGE (Dordr). doi:10.1007/s11357-016-9925-y.
  28. Jeong, M. H. et al. (2014). In vitro evaluation of Cordyceps militaris as a potential radioprotective agent. Int J Mol Med. 34:1349-1357.
  29. Mishra, S. et al. (2014). Semiquinone glucoside derivative (SQGD) isolated from Bacillus sp. INM-1 protects against gamma radiation-induced oxidative stress. Environ Toxicol Pharmacol.  37:553-562.
  30. Gardner, A. W. et al. (2014). Gender and racial differences in endothelial oxidative stress and inflammation in patients with symptomatic peripheral artery disease. J Vasc Surg. 61:1249-1257.