293AAV Cell Line

293AAV Cell Line
  • Larger cell surface area for higher viral yields
  • Flattened morphology and firmer attachment to culture plates
  • Ideal for large scale AAV production


Frequently Asked Questions about this product

General FAQs about using AAV

General FAQs about Viral Gene Delivery

Email To BuyerPrint this PageCopy Link

Please contact your distributor for pricing.

293AAV Cell Line
Catalog Number
1 vial
Manual/Data Sheet Download
SDS Download
Recent Product Citations
  1. Park, J. et al. (2023). Chemogenetic regulation of the TARP-lipid interaction mimics LTP and reversibly modifies behavior. Cell Rep. 42(8):112826. doi: 10.1016/j.celrep.2023.112826.
  2. Keng, C.T. et al. (2023). AAV-CRISPR-Cas13 eliminates human enterovirus and prevents death of infected mice. EBioMedicine. 93:104682. doi: 10.1016/j.ebiom.2023.104682.
  3. Kuga, N. et al. (2023) Hippocampal sharp wave ripples underlie stress susceptibility in male mice. Nat Commun. 14(1):2105. doi: 10.1038/s41467-023-37736-x.
  4. Hou, J. et al. (2023). Ginkgo biloba extracts improve choroidal circulation leading to suppression of myopia in mice. Sci Rep. 13(1):3772. doi: 10.1038/s41598-023-30908-1.
  5. Hartweger, H. et al. (2023). Gene Editing of Primary Rhesus Macaque B Cells. J Vis Exp. doi: 10.3791/64858.
  6. Hossen, E. et al. (2022). Rho-Kinase/ROCK Phosphorylates PSD-93 Downstream of NMDARs to Orchestrate Synaptic Plasticity. Int J Mol Sci. 24(1):404. doi: 10.3390/ijms24010404.
  7. Xi, Z. et al. (2022). Gene augmentation prevents retinal degeneration in a CRISPR/Cas9-based mouse model of PRPF31 retinitis pigmentosa. Nat Commun. 13(1):7695. doi: 10.1038/s41467-022-35361-8.
  8. Yoshizawa, T. et al. (2022). SIRT7 suppresses energy expenditure and thermogenesis by regulating brown adipose tissue functions in mice. Nat Commun. 13(1):7439. doi: 10.1038/s41467-022-35219-z.
  9. McQuillan, H.J. et al. (2022). Definition of the estrogen negative feedback pathway controlling the GnRH pulse generator in female mice. Nat Commun. 13(1):7433. doi: 10.1038/s41467-022-35243-z.
  10. Keng, C.T. et al. (2022). Multiplex viral tropism assay in complex cell populations with single-cell resolution. Gene Ther. 29(9):555-565. doi: 10.1038/s41434-022-00360-3.
  11. Rodrigues, A. et al. (2022). Modeling PRPF31 retinitis pigmentosa using retinal pigment epithelium and organoids combined with gene augmentation rescue. NPJ Regen Med. 7(1):39. doi: 10.1038/s41536-022-00235-6.
  12. Agnetti, J. et al. (2022). PI3Kδ activity controls plasticity and discriminates between EMT and stemness based on distinct TGFβ signaling. Commun Biol. 5(1):740. doi: 10.1038/s42003-022-03637-w.
  13. Yamahashi, Y. et al. (2022). Phosphoproteomic of the acetylcholine pathway enables discovery of the PKC-β-PIX-Rac1-PAK cascade as a stimulatory signal for aversive learning. Mol Psychiatry. doi: 10.1038/s41380-022-01643-2.
  14. Deroyer, C. et al. (2022). CEMIP (KIAA1199) regulates inflammation, hyperplasia and fibrosis in osteoarthritis synovial membrane. Cell Mol Life Sci. 79(5):260. doi: 10.1007/s00018-022-04282-6.
  15. Tanenhaus, A. et al. (2022). Cell-selective AAV-mediated SCN1A Gene Regulation Therapy Rescues Mortality and Seizure Phenotypes in a Dravet Syndrome Mouse Model and is Well Tolerated in Non-human Primates. Hum Gene Ther. doi: 10.1089/hum.2022.037.
  16. Zhou, J. et al. (2022). Liver regeneration and ethanol detoxification: A new link in YAP regulation of ALDH1A1 during alcohol-related hepatocyte damage. FASEB J. 36(4):e22224. doi: 10.1096/fj.202101686R.
  17. Kashihara, T. et al. (2022). YAP mediates compensatory cardiac hypertrophy through aerobic glycolysis in response to pressure overload. J Clin Invest. doi: 10.1172/JCI150595.
  18. Liu, J. et al. (2022). Intravitreal gene therapy restores the autophagy-lysosomal pathway and attenuates retinal degeneration in cathepsin D-deficient mice. Neurobiol Dis. 164:105628. doi: 10.1016/j.nbd.2022.105628.
  19. Faruk, M.O. et al. (2021). Muscarinic signaling regulates voltage-gated potassium channel KCNQ2 phosphorylation in the nucleus accumbens via protein kinase C for aversive learning. J Neurochem. doi: 10.1111/jnc.15555.
  20. Ding, L. et al. (2021). Peroxisomal β-oxidation acts as a sensor for intracellular fatty acids and regulates lipolysis. Nat Metab. doi: 10.1038/s42255-021-00489-2.
  21. Sveidahl Johansen, O. et al. (2021). Lipolysis drives expression of the constitutively active receptor GPR3 to induce adipose thermogenesis. Cell. 184(13):3502-3518.e33. doi: 10.1016/j.cell.2021.04.037.
  22. Bhat, N. et al. (2021). Dyrk1b promotes hepatic lipogenesis by bypassing canonical insulin signaling and directly activating mTORC2 in mice. J Clin Invest. doi: 10.1172/JCI153724.
  23. Yun, T. et al. (2021). Inhibitor of DNA binding 2 (Id2) mediates microtubule polymerization in the brain by regulating αK40 acetylation of α-tubulin. Cell Death Discov. 7(1):257. doi: 10.1038/s41420-021-00652-4.
  24. Chao, G. et al. (2021). Measurement of Large Serine Integrase Enzymatic Characteristics in HEK293 Cells Reveals Variability and Influence on Downstream Reporter Expression. FEBS J. doi: 10.1111/febs.16037.
  25. Sveidahl Johansen, O. et al. (2021). Lipolysis drives expression of the constitutively active receptor GPR3 to induce adipose thermogenesis. Cell. doi: 10.1016/j.cell.2021.04.037.
  26. Hu, J. et al. (2021). Co-opting regulation bypass repair as a gene correction strategy for monogenic diseases. Mol Ther. doi: 10.1016/j.ymthe.2021.04.017.
  27. Motori, E. et al. (2020). Larsson, Neuronal metabolic rewiring promotes resilience to neurodegeneration caused by mitochondrial dysfunction. Sci. Adv. 6(35). doi: 10.1126/sciadv.aba8271.
  28. Gӧbel, J. et al. (2020). Mitochondria-Endoplasmic Reticulum Contacts in Reactive Astrocytes Promote Vascular Remodeling. Cell Metab. pii: S1550-4131(20)30120-0. doi: 10.1016/j.cmet.2020.03.005.
  29. Lin, Y.H. et al. (2020). Accumbal D2R-medium spiny neurons regulate aversive behaviors through PKA-Rap1 pathway. Neurochem Int. doi: 10.1016/j.neuint.2020.104935.
  30. Siegrist, C.M. et al. (2020). CRISPR/Cas9 as an antiviral against Orthopoxviruses using an AAV vector. Sci Rep. 10(1):19307. doi: 10.1038/s41598-020-76449-9.