Alkaline Phosphatase Activity Assays, 96-Well

Alkaline Phosphatase Activity Assays, 96-Well
  • Measure the ubiquitous alkaline phosphatase marker in embryonic stem cells and embryonic germ cells
  • Quantify activity by colorimetric or fluorometric plate reader

 

Frequently Asked Questions about this product

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

StemTAG™ Alkaline Phosphatase Activity Assay Kit
Catalog Number
CBA-301
Size
100 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$315.00
Product Details

Alkaline Phosphatase (AP) is a widely used marker for both mouse and human embryonic stem cells (ES) and embryonic germ cells (EG). Our StemTAG™ Alkaline Phosphatase kits provide an efficient system for monitoring cell differentiation or undifferentiation using the AP marker.

The StemTAG™ Alkaline Phosphatase Activity Assay Kits provide reagents for quantifying alkaline phosphatase activity in a convenient 96-well plate format, with either colorimetric or fluorescence detection.

Staining of Undifferentiated and Differentiated ES cells using the StemTAG™ Alkaline Phosphatase Staining Kit. Murine embryonic stem cells (ES-D3) were maintained in an undifferentiated state on gelatin-coated dishes in the presence of LIF. To induce differentiation, LIF was withdrawn over a period of several days; various differentiation events were observed (cells became flattened and enlarged with reduced proliferation). At the end of day 5, cells were stained according to the StemTAG™ Alkaline Phosphatase Staining Kit assay protocol.

Recent Product Citations
  1. Choi, S. et al. (2020). Biochemical activity of magnesium ions on human osteoblast migration. Biochem Biophys Res Commun. S0006-291X(20)31447-9. doi: 10.1016/j.bbrc.2020.07.057 (#CBA-301).
  2. Chang, P.H. et al. (2020). Chitosan 3D cell culture system promotes naïve-like features of human induced pluripotent stem cells: A novel tool to sustain pluripotency and facilitate differentiation. Biomaterials. doi: 10.1016/j.biomaterials.2020.120575 (#CBA-301).
  3. Ito, K. et al. (2020). MicroRNA-204 regulates osteogenic induction in dental follicle cells. J Dent Sci. doi: 10.1016/j.jds.2019.11.004 (#CBA-301).
  4. Nam, Y.J. et al. (2020). CRH receptor antagonists from Pulsatilla chinensis prevent CRH-induced premature catagen transition in human hair follicles. J Cosmet Dermatol. doi: 10.1111/jocd.13328 (#CBA-301).
  5. Escobar, A. et al. (2019). Mesoporous Titania Coatings with carboxylated Pores for Complexation and slow Delivery of Strontium for osteogenic Induction. Appl Surf Sci. doi: 10.1016/j.apsusc.2019.145172 (#CBA-301).
  6. Escobar, A. et al. (2019). Strontium Titanate (SrTiO3) Mesoporous Coatings for Enhanced Strontium Delivery and Osseointegration on Bone Implants. Adv. Eng. Mater. doi:10.1002/adem.201801210 (#CBA-301).
  7. Li, J. et al. (2019). Osteogenic capacity and cytotherapeutic potential of periodontal ligament cells for periodontal regeneration in vitro and in vivo. PeerJ. 7:e6589. doi: 10.7717/peerj.6589 (#CBA-301).
  8. Escobar, A. et al. (2019). Antibacterial Mesoporous Titania Films with Embedded Gentamicin and Surface Modified with Bone Morphogenetic Protein 2 to Promote Osseointegration in Bone Implants. Advanced Materials Interfaces. 1801648. doi:10.1002/admi.201801648 (#CBA-301).
  9. Cheng, J. et al. (2019). Stilbene glycoside protects osteoblasts against oxidative damage via Nrf2/HO-1 and NF-κB signaling pathways. Arch Med Sci. 15(1):196-203. doi: 10.5114/aoms.2018.79937 (#CBA-301).
  10. Tamburaci, S. et al. (2019). Chitosan-hybrid poss nanocomposites for bone regeneration: the effect of poss nanocage on surface, morphology, structure and in vitro bioactivity. Int J Biol Macromol. pii: S0141-8130(19)34171-6. doi: 10.1016/j.ijbiomac.2019.10.006 (#CBA-307).
  11. Kara, A. et al. (2019). Bioactive fish scale incorporated chitosan biocomposite scaffolds for bone tissue engineering. Int J Biol Macromol. 130:266-279. doi: 10.1016/j.ijbiomac.2019.02.067 (#CBA-307).
  12. Guo, Y.C. et al. (2018). Ubiquitin-specific protease USP34 controls osteogenic differentiation and bone formation by regulating BMP2 signaling. EMBO J. 37(20). pii: e99398. doi: 10.15252/embj.201899398 (#CBA-301).
  13. Xiong, S. et al. (2018). Immunization with Na+/K+ ATPase DR peptide prevents bone loss in an ovariectomized rat osteoporosis model. Biochem Pharmacol. 156:281-290. doi: 10.1016/j.bcp.2018.08.024 (#CBA-301).
  14. Camp, E. et al. (2018). miRNA-376c-3p Mediates TWIST-1 Inhibition of Bone Marrow-Derived Stromal Cell Osteogenesis and Can Reduce Aberrant Bone Formation of TWIST-1 Haploinsufficient Calvarial Cells. Stem Cells Dev. 27(23):1621-1633. doi: 10.1089/scd.2018.0083 (#CBA-301).
  15. Yang, F. et al. (2018). Fatty acids modulate the expression levels of key proteins for cholesterol absorption in Caco-2 monolayer. Lipids Health Dis. 17(1):32. doi: 10.1186/s12944-018-0675-y(#CBA-301).
  16. Abueva, C. D. G. et al. (2018). Multi-channel biphasic calcium phosphate granules as cell carrier capable of supporting osteogenic priming of mesenchymal stem cells. Materials & Design. 141:142–149. doi:10.1016/j.matdes.2017.12.040 (#CBA-301).
  17. Imai, K. et al. (2017).  Influence of Fluoride Contamination on Titanium Surface on Cell Viability and Cell Differentiation of ES-D3 Cells. J Oral Tissue Engin. 15(1):35-40. doi: 10.11223/jarde.15.35 (#CBA-301).
  18. Imai, K. et al. (2017). Study of ES Cell Differentiation using Three-dimensional Culture with Silica Fiber. Nano Biomedicine. 9(2):55-60. doi: 10.11344/nano.9.55 (#CBA-301).
  19. Kamiya, N. et al. (2017). Targeted disruption of NF1 in osteocyte increases FGF23 and osteoid with osteomalacia-like bone phenotype. J Bone Miner Res. doi: 10.1002/jbmr.3155 (#CBA-301).
  20. Tamburaci, S. et al. (2017). Novel poss reinforced chitosan composite membranes for guided bone tissue regeneration. J Mater Sci Mater Med. 29(1):1. doi: 10.1007/s10856-017-6005-5 (#CBA-307).
  21. Jin, H. et al. (2016). Increased activity of TNAP compensates for reduced adenosine production and promotes ectopic calcification in the genetic disease ACDC. Sci. Signal. 9:ra121 (#CBA-301).
  22. Lee, H. Y. et al. (2016). Porcine placenta hydrolysates enhance osteoblast differentiation through their antioxidant activity and effects on ER stress. BMC Complement Altern Med. doi:10.1186/s12906-016-1274-y (#CBA-301).
  23. Choi, H. Y. et al. (2016). Efficient mRNA delivery with graphene oxide-polyethylenimine for generation of footprint-free human induced pluripotent stem cells. J Control Release. 235:222-235 (#CBA-301).
  24. Pengjam, Y. et al. (2016). Anthraquinone glycoside aloin induces osteogenic initiation of MC3T3-E1 cells: Involvement of MAPK mediated wnt and bmp signaling. Biomol Ther. 24:123-131 (#CBA-301).
  25. Yue, Y. et al. (2015). Safe and bodywide muscle transduction in young adult Duchenne muscular dystrophy dogs with adeno-associated virus. Hum Mol Genet. doi:10.1093/hmg/ddv310 (#CBA-301).
  26. Pino-Barrio, M. J. et al. (2015). V-myc immortalizes human neural stem cells in the absence of pluripotency-associated traits. PLoS One. 10:e0118499 (#CBA-301).
  27. Pan, X. et al. (2015). AAV-8 is more efficient than AAV-9 in transducing neonatal dog heart. Hum Gene Ther Methods. doi:10.1089/hgtb.2014.128 (#CBA-301).
  28. Salem, O. et al. (2014). Naproxen affects osteogenesis of human mesenchymal stem cells via regulation of Indian hedgehog signaling molecules. Arthritis Res Ther. 16:R152 (#CBA-301).
  29. Guo, L. et al. (2014). Effects of erythropoietin on osteoblast proliferation and function. Clin Exp Med. 14:69-76 (#CBA-301).
  30. Dong, Y. et al. (2014). NOTCH-mediated maintenance and expansion of human bone marrow stromal/stem cells: a technology designed for orthopedic regenerative medicine. Stem Cells Transl Med. 3:1456-1466 (#CBA-301).