Angiogenesis Assay

Angiogenesis Assay
  • Assesses angiogenic tube formation in vitro
  • Uses an ECM matrix gel
  • Resembles in vivo basement membrane environment


Frequently Asked Questions about this product

Email To BuyerPrint this PageCopy Link

Please contact your distributor for pricing.

Endothelial Tube Formation Assay (In Vitro Angiogenesis)
Catalog Number
50 assays
Light Microscopy
Manual/Data Sheet Download
SDS Download
Product Details

For angiogenesis to occur, endothelial cells must escape their stable location and break through the basement membrane. Cells migrate toward an angiogenic stimulus that may be released from nearby tumor cells. These cells proliferate to form new blood vessels.

Our Endothelial Tube Formation Assay (In Vitro Angiogenesis) provides an easy, robust system to assess angiogenesis in vitro. The ECM gel matrix very closely resembles an in vivo environment.

HUVEC Tube Formation on ECM Gel. HUVEC cells from a standard tissue culture plate were incubated on an ECM gel. After several hours, tube formation can be visualized under a light microscope.

Recent Product Citations
  1. Liu, H. et al. (2023). Ginsenoside Rg3 inhibits the malignant progression of cervical cancer cell by regulating AKT2 expression. Heliyon. 9(8):e19045. doi: 10.1016/j.heliyon.2023.e19045.
  2. Houri, A. et al. (2023). Suprabasin enhances the invasion, migration, and angiogenic ability of oral squamous cell carcinoma cells under hypoxic conditions. Oncol Rep. 49(5):83. doi: 10.3892/or.2023.8520.
  3. Nagashima, Y. et al. (2023). Pretreatment with tadalafil attenuates cardiotoxicity induced by combretastatin A4 disodium phosphate in rats. Journal of Toxicologic Pathology. doi: 10.1293/tox.2022-0143.
  4. Stellato, M. et al. (2023). The AP-1 transcription factor Fosl-2 drives cardiac fibrosis and arrhythmias under immunofibrotic conditions. Commun Biol. 6(1):161. doi: 10.1038/s42003-023-04534-6. 
  5. Ganesh, V. et al. (2022). Exosome-Based Cell Homing and Angiogenic Differentiation for Dental Pulp Regeneration. Int J Mol Sci. 24(1):466. doi: 10.3390/ijms24010466.
  6. Iha, K. et al. (2022). Gastric Cancer Cell-Derived Exosomal GRP78 Enhances Angiogenesis upon Stimulation of Vascular Endothelial Cells. Curr Issues Mol Biol. 44(12):6145-6157. doi: 10.3390/cimb44120419.
  7. Zheng, J. et al. (2022). ZNF561 antisense RNA 1 contributes to angiogenesis in hepatocellular carcinoma through upregulation of platelet-derived growth Factor-D. Chin J Physiol. 65(5):258-265. doi: 10.4103/0304-4920.359795.
  8. Yu, B. et al. (2022). miR-29c inhibits metastasis of gastric cancer cells by targeting VEGFA. J Cancer. doi: 10.7150/jca.77727.
  9. Gong, Y. et al. (2022). Circ_0001897 regulates high glucose-induced angiogenesis and inflammation in retinal microvascular endothelial cells through miR-29c-3p/transforming growth factor beta 2 axis. Bioengineered. 13(5):11694-11705. doi: 10.1080/21655979.2022.2070997.
  10. Kieu, T.Q. et al. (2022). Kinetics of LYVE-1-positive M2-like macrophages in developing and repairing dental pulp in vivo and their pro-angiogenic activity in vitro. Sci Rep. 12(1):5176. doi: 10.1038/s41598-022-08987-3.
  11. Montero, P. et al. (2022). Paclitaxel-Induced Epidermal Alterations: An In Vitro Preclinical Assessment in Primary Keratinocytes and in a 3D Epidermis Model. Int. J. Mol. Sci. 23(3):1142. doi: 10.3390/ijms23031142.
  12. Rofia, B. et al. (2021). Regulatory interplay between Vav1, Syk and β-catenin occurs in lung cancer cells. Cell Signal. doi: 10.1016/j.cellsig.2021.110079.
  13. Gurel Pekozer, G. et al. (2021). Investigation of Vasculogenesis Inducing Biphasic Scaffolds for Bone Tissue Engineering. ACS Biomater Sci Eng. doi: 10.1021/acsbiomaterials.0c01071. 
  14. Zuo, Q. et al. (2021). Aspirin reduces sFlt-1 mediated apoptosis of trophoblast cells in preeclampsia. Mol Hum Reprod. doi: 10.1093/molehr/gaaa089.
  15. Javadi, J. et al. (2021). Syndecan-1 Overexpressing Mesothelioma Cells Inhibit Proliferation, Wound Healing, and Tube Formation of Endothelial Cells. Cancers (Basel). 13(4):655. doi: 10.3390/cancers13040655.
  16. Wolcott, K.M. et al. (2020). CD34 positive cells isolated from traumatized human skeletal muscle require the CD34 protein for multi-potential differentiation. Cell Signal. doi: 10.1016/j.cellsig.2020.109711.
  17. Guerrero, F. et al. (2020). Role of endothelial microvesicles released by p-cresol on endothelial dysfunction. Sci Rep. 10(1):10657. doi: 10.1038/s41598-020-67574-6.
  18. Kim, H.K. et al. (2019). RRAD expression in gastric and colorectal cancer with peritoneal carcinomatosis. Sci Rep. 9(1):19439. doi: 10.1038/s41598-019-55767-7.
  19. Cam, M. et al. (2016). ΔNp63 mediates cellular survival and metastasis in canine osteosarcoma. Oncotarget. 7(30):48533-48546. doi: 10.18632/oncotarget.10406.
  20. Shirasu, N. et al. (2019). Highly versatile cancer photoimmunotherapy using photosensitizer-conjugated avidin and biotin-conjugated targeting antibodies. Cancer Cell Int. doi: 10.1186/s12935-019-1034-4.
  21. Kitala, D. et al. (2019). Amniotic cells share clusters of differentiation of fibroblasts and keratinocytes, influencing their ability to proliferate and aid in wound healing while impairing their angiogenesis capability. Eur J Pharmacol. pii: S0014-2999(19)30148-7. doi: 10.1016/j.ejphar.2019.02.043.
  22. Teng, X. et al. (2019). Selective deletion of endothelial cell calpain in mice reduces diabetic cardiomyopathy by improving angiogenesis. Diabetologia. 62(5):860-872. doi: 10.1007/s00125-019-4828-y.
  23. Li, W. et al. (2019). LncRNA OR3A4 participates in the angiogenesis of hepatocellular carcinoma through modulating AGGF1/akt/mTOR pathway. Eur J Pharmacol. 849:106-114. doi: 10.1016/j.ejphar.2019.01.049.
  24. Chen, C.Y. et al. (2018). N-Terminomics identifies HtrA1 cleavage of thrombospondin-1 with generation of a proangiogenic fragment in the polarized retinal pigment epithelial cell model of age-related macular degeneration. Matrix Biol. 70:84-101. doi: 10.1016/j.matbio.2018.03.013.
  25. Mouritzen, M.V. et al. (2018). Neurotensin, substance P, and insulin enhance cell migration. J Pept Sci. 24(7):e3093. doi: 10.1002/psc.3093.
  26. Kudo, H. et al. (2018). A potential role for the silent information regulator 2 homologue 1 (SIRT1) in periapical periodontitis. Int Endod J. 51(7):747-757. doi: 10.1111/iej.12894.
  27. Suda, M. et al. (2017). Inhibition of dipeptidyl peptidase-4 ameliorates cardiac ischemia and systolic dysfunction by up-regulating the FGF-2/EGR-1 pathway. PLoS One. 12(8):e0182422. doi: 10.1371/journal.pone.0182422.
  28. Bae, W.J. et al. (2017). Lysyl oxidase-mediated VEGF-induced differentiation and angiogenesis in human dental pulp cells. Int. Endod. J. doi: 10.1111/iej.12796.
  29. Sakaguchi, K. et al. (2017). Periodontal tissue regeneration using the cytokine cocktail mimicking secretomes in the conditioned media from human mesenchymal stem cells. Biochem Biophys Res Commun. doi: 10.1016/j.bbrc.2017.01.065.
  30. Katagiri, W. et al. (2017). A defined mix of cytokines mimics conditioned medium from cultures of bone marrow-derived mesenchymal stem cells and elicits bone regeneration. Cell Prolif. doi: 10.1111/cpr.12333.