Angiogenesis Assay

  • Assesses angiogenic tube formation in vitro
  • Uses an ECM matrix gel
  • Resembles in vivo basement membrane environment

 

Frequently Asked Questions about this product

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

Endothelial Tube Formation Assay (In Vitro Angiogenesis)
Catalog Number
CBA-200
Size
50 assays
Detection
Light Microscopy
Manual/Data Sheet Download
SDS Download
Price
$440.00
Product Details

For angiogenesis to occur, endothelial cells must escape their stable location and break through the basement membrane. Cells migrate toward an angiogenic stimulus that may be released from nearby tumor cells. These cells proliferate to form new blood vessels.

Our Endothelial Tube Formation Assay (In Vitro Angiogenesis) provides an easy, robust system to assess angiogenesis in vitro. The ECM gel matrix very closely resembles an in vivo environment.

HUVEC Tube Formation on ECM Gel. HUVEC cells from a standard tissue culture plate were incubated on an ECM gel. After several hours, tube formation can be visualized under a light microscope.

Recent Product Citations
  1. Lee, S.I. et al. (2016). Baicalein promotes angiogenesis and odontoblastic differentiation via the BMP and Wnt pathways in human dental pulp cells. Am. J. Chinese Med. 44:1457.
  2. Yun, H.M. et al. (2016). Magnetic nanofiber scaffold-induced stimulation of odontogenesis and pro-angiogenesis of human dental pulp cells through Wnt/MAPK/NF-κB pathways. Dent Mater. doi:10.1016/j.dental.2016.06.016.
  3. Qiu, D. et al. (2016). Overexpression of FoxP1 is a novel biomarker of malignant human pancreatic cancer. Int J Clin Exp Med. 9:9054-9063.
  4. Pekozer, G. G. et al. (2016). Influence of co-culture on osteogenesis and angiogenesis of bone marrow mesenchymal stem cells and aortic endothelial cells. Microvasc Res. doi:10.1016/j.mvr.2016.06.005.
  5. Sun, Y. et al. (2016). Toll-like receptor 4 promotes angiogenesis in pancreatic cancer via PI3K/AKT signaling. Exp Cell Res. doi:10.1016/j.yexcr.2016.07.009.
  6. Bid, H. K. et al. (2016). The Bromodomain BET inhibitor JQ1 suppresses tumor angiogenesis in models of childhood sarcoma. Mol Cancer Ther. doi:10.1158/1535-7163.
  7. Yun, H. M. et al. (2016). Magnetic nanocomposite scaffolds combined with static magnetic field in the stimulation of osteoblastic differentiation and bone formation. Biomaterials. 85:88-98.
  8. Chang, S. W. et al. (2016). Combined effects of mineral trioxide aggregate and human placental extract on rat pulp tissue and growth, differentiation and angiogenesis in human dental pulp cells. Acta Odontol Scand. doi:10.3109/00016357.2015.1120882.
  9. Sun, T. et al. (2016). Forkhead box protein k1 recruits TET1 to act as a tumor suppressor and is associated with MRI detection. Jpn J Clin Oncol. doi:10.1093/jjco/hyv185.
  10. Al-Mahrouki, A. A. et al. (2015). Ultrasound-stimulated microbubble enhancement of radiation treatments: endothelial cell function and mechanism.Oncoscience.2:944-957.
  11. Chang, S. W. et al. (2015). Odontoblastic differentiation, inflammatory response, and angiogenic potential of 4 calcium silicate–based cements: MicroMega MTA, ProRoot MTA, Retro MTA, and experimental calcium silicate cement. J Endod. doi: 10.1016/j.joen.2015.04.018.
  12. Zheng, D. et al. (2015). Silencing of miR-195 reduces diabetic cardiomyopathy in C57BL/6 mice. Diabetologia.  doi: 10.1007/s00125-015-3622-8.
  13. Yamanegi, K. et al. (2015). Sodium valproate, a histone deacetylase inhibitor, modulates the vascular endothelial growth inhibitor-mediated cell death in human osteosarcoma and vascular endothelial cells. Int J Oncol. doi: 10.3892/ijo.2015.2924. 
  14. Bae, W. J. et al. (2015). Effects of sodium tri-and hexametaphosphate on proliferation, differentiation, and angiogenic potential of human dental pulp cells. J Endod. doi: 10.1016/j.joen.2015.01.038.
  15. Zhang, J. et al. (2015). Effects of bioactive cements incorporating zinc-bioglass nanoparticles on odontogenic and angiogenic potential of human dental pulp cells. J Biomater Appl. 29:954-964.
  16. Pessôa, B. S. et al. (2015). Effect of a stable angiotensin-(1–7) analogue on progenitor cell recruitment and cardiovascular function post myocardial infarction. J Am Heart Assoc. doi: 10.1161/JAHA.114.001510.
  17. Hutzen, B. et al. (2014). Treatment of medulloblastoma with oncolytic measles viruses expressing the angiogenesis inhibitors endostatin and angiostatin. BMC Cancer. 14:206.
  18. El Kaffas, A. et al. (2014). Sunitinib effects on the radiation response of endothelial and breast tumor cells. Microvasc Res.  92:1-9.
  19. Lee, S. J. et al. (2014). Statins, 3-hydroxy-3-methylglutaryl Coenzyme A Reductase Inhibitors, Potentiate the Anti-Angiogenic Effects of Bevacizumab by Suppressing Angiopoietin2, BiP, and Hsp90α in Human Colorectal Cancer Br J Cancer. 111-497-505.
  20. Shin, M.R. et al. (2014). TNF-α and LPS Activate Angiogenesis via VEGF and SIRT1 Signalling in Human Dental Pulp Cells. Int Endod J. 10.1111/iej.12396.
  21. Edwards, A.K. et al. (2014).  A peptide inhibitor of synuclein-greduces neovascularization of human endometriotic lesions.  Mol Hum Reprod20:1002-1008.
  22. Cai, X. et al. (2013). Serum Amyloid A Stimulates Cultured Endothelial Cells to Migrate and Proliferate: Inhibition by the Multikinase Inhibitor BIBF1120. Clin Exp Pharmacol Physiol. 40:662-670.
  23. Yu, J.G. et al. (2013). Baroreflex Deficiency Hampers Angiogenesis After Myocardial Infarction via acetylcholine-α7-nicotinic ACh Receptor in Rats. Eur. Heart J. 34:2412-2420.
  24. Bid, H. et al. (2013). Dual Targeting of the Type 1 Insulin-like Growth Factor Receptor and Its Ligands as an Effective Antiangiogenic Strategy. Clin. Cancer Res. 19: 2984-2994.
  25. Cai, C. et al. (2012). SIVmac239-Nef Down-regulates Cell Surface Expression of CXCR4 in Tumor Cells and Inhibits Proliferation, Migration and Angiogenesis. Anitcancer Res. 23:2759-2768.
  26. Bid, H. et al. (2012). Potent Inhibition of Angiogenesis by the IGF-1 Receptor-Targeting Antibody SCH717454 Is Reversed by IGF-2. Mol. Cancer Ther. 11: 649-659.
  27. Spencer, M. et al. (2011). Adipose Tissue Extracellular Matrix and Vascular Abnormalities in Obesity and Insulin Resistance. J Clin Endocrinol Metab. 96:E1990-1998.
  28. Wang, C. et al. (2010). Rosuvastatin, Identified from a Zebrafish Chemical Genetic Screen for Antiangiogenic Compounds, Suppresses the Growth of Prostate Cancer. Eur Urol. 58:418-426.
  29. Weskamp, G. et al. (2010). Pathological Neovascularization is Reduced by Inactivation of ADAM17 in Endothelial Cells but Not in Pericytes. Circ. Res. 106:932-94.
  30. Hirata, H. et al. (2010). Role of Secreted Frizzled-Related Protein3 in Human Renal Cell Carcinoma. Cancer Res. 70:1896-1905.
  31. Alfano, R.W. et al. (2009). Matrix Metalloproteinase-Activated Anthrax Lethal Toxin Inhibits Endothelial Invasion and Neovasculature Formation During In Vitro Morphogenesis. Mol. Cancer Res. 7:452-461.
  32. Nogueras, S. et al. (2008). Coupling of Endothelial Injury and Repair. An Analysis Using an In Vivo Experimental mMdel. Am J. Physiol Heart Circ Physiol 294:H708-H713.
  33. Masamune, A. et al. (2008). Hypoxia Stimulates Pancreatic Stellate Cells to Induce Fibrosis and Angiogenesis in Pancreatic Cancer. Am. J. Physiol. Gastrointest. Liver Physiol. 295:G709-G717.
  34. Zou, L. et al. (2007). Rapid Xenograft Tumor Progression in Beta-Arrestin1 Transgenic Mice Due to Enhanced Tumor Angiogenesis. FASEB J. 22:355-364.