Angiogenesis Assay

Angiogenesis Assay
  • Assesses angiogenic tube formation in vitro
  • Uses an ECM matrix gel
  • Resembles in vivo basement membrane environment

 

Frequently Asked Questions about this product

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

Endothelial Tube Formation Assay (In Vitro Angiogenesis)
Catalog Number
CBA-200
Size
50 assays
Detection
Light Microscopy
Manual/Data Sheet Download
SDS Download
Price
$450.00
Product Details

For angiogenesis to occur, endothelial cells must escape their stable location and break through the basement membrane. Cells migrate toward an angiogenic stimulus that may be released from nearby tumor cells. These cells proliferate to form new blood vessels.

Our Endothelial Tube Formation Assay (In Vitro Angiogenesis) provides an easy, robust system to assess angiogenesis in vitro. The ECM gel matrix very closely resembles an in vivo environment.

HUVEC Tube Formation on ECM Gel. HUVEC cells from a standard tissue culture plate were incubated on an ECM gel. After several hours, tube formation can be visualized under a light microscope.

Recent Product Citations
  1. Wolcott, K.M. et al. (2020). CD34 positive cells isolated from traumatized human skeletal muscle require the CD34 protein for multi-potential differentiation. Cell Signal. doi: 10.1016/j.cellsig.2020.109711.
  2. Guerrero, F. et al. (2020). Role of endothelial microvesicles released by p-cresol on endothelial dysfunction. Sci Rep. 10(1):10657. doi: 10.1038/s41598-020-67574-6.
  3. Kim, H.K. et al. (2019). RRAD expression in gastric and colorectal cancer with peritoneal carcinomatosis. Sci Rep. 9(1):19439. doi: 10.1038/s41598-019-55767-7.
  4. Cam, M. et al. (2016). ΔNp63 mediates cellular survival and metastasis in canine osteosarcoma. Oncotarget. 7(30):48533-48546. doi: 10.18632/oncotarget.10406.
  5. Shirasu, N. et al. (2019). Highly versatile cancer photoimmunotherapy using photosensitizer-conjugated avidin and biotin-conjugated targeting antibodies. Cancer Cell Int. doi: 10.1186/s12935-019-1034-4.
  6. Kitala, D. et al. (2019). Amniotic cells share clusters of differentiation of fibroblasts and keratinocytes, influencing their ability to proliferate and aid in wound healing while impairing their angiogenesis capability. Eur J Pharmacol. pii: S0014-2999(19)30148-7. doi: 10.1016/j.ejphar.2019.02.043.
  7. Teng, X. et al. (2019). Selective deletion of endothelial cell calpain in mice reduces diabetic cardiomyopathy by improving angiogenesis. Diabetologia. 62(5):860-872. doi: 10.1007/s00125-019-4828-y.
  8. Li, W. et al. (2019). LncRNA OR3A4 participates in the angiogenesis of hepatocellular carcinoma through modulating AGGF1/akt/mTOR pathway. Eur J Pharmacol. 849:106-114. doi: 10.1016/j.ejphar.2019.01.049.
  9. Chen, C.Y. et al. (2018). N-Terminomics identifies HtrA1 cleavage of thrombospondin-1 with generation of a proangiogenic fragment in the polarized retinal pigment epithelial cell model of age-related macular degeneration. Matrix Biol. 70:84-101. doi: 10.1016/j.matbio.2018.03.013.
  10. Mouritzen, M.V. et al. (2018). Neurotensin, substance P, and insulin enhance cell migration. J Pept Sci. 24(7):e3093. doi: 10.1002/psc.3093.
  11. Kudo, H. et al. (2018). A potential role for the silent information regulator 2 homologue 1 (SIRT1) in periapical periodontitis. Int Endod J. 51(7):747-757. doi: 10.1111/iej.12894.
  12. Suda, M. et al. (2017). Inhibition of dipeptidyl peptidase-4 ameliorates cardiac ischemia and systolic dysfunction by up-regulating the FGF-2/EGR-1 pathway. PLoS One. 12(8):e0182422. doi: 10.1371/journal.pone.0182422.
  13. Bae, W.J. et al. (2017). Lysyl oxidase-mediated VEGF-induced differentiation and angiogenesis in human dental pulp cells. Int. Endod. J. doi: 10.1111/iej.12796.
  14. Sakaguchi, K. et al. (2017). Periodontal tissue regeneration using the cytokine cocktail mimicking secretomes in the conditioned media from human mesenchymal stem cells. Biochem Biophys Res Commun. doi: 10.1016/j.bbrc.2017.01.065.
  15. Katagiri, W. et al. (2017). A defined mix of cytokines mimics conditioned medium from cultures of bone marrow-derived mesenchymal stem cells and elicits bone regeneration. Cell Prolif. doi: 10.1111/cpr.12333.
  16. Kim, J.Y. et al. (2017). Role of Protein Phosphatase 1 in Angiogenesis and Odontoblastic Differentiation of Human Dental Pulp Cells. J Endod. doi: 10.1016/j.joen.2016.10.013.
  17. Lee, S.I. et al. (2016). Baicalein promotes angiogenesis and odontoblastic differentiation via the BMP and Wnt pathways in human dental pulp cells. Am. J. Chinese Med. 44:1457.
  18. Yun, H.M. et al. (2016). Magnetic nanofiber scaffold-induced stimulation of odontogenesis and pro-angiogenesis of human dental pulp cells through Wnt/MAPK/NF-κB pathways. Dent Mater. doi:10.1016/j.dental.2016.06.016.
  19. Qiu, D. et al. (2016). Overexpression of FoxP1 is a novel biomarker of malignant human pancreatic cancer. Int J Clin Exp Med. 9:9054-9063.
  20. Pekozer, G. G. et al. (2016). Influence of co-culture on osteogenesis and angiogenesis of bone marrow mesenchymal stem cells and aortic endothelial cells. Microvasc Res. doi:10.1016/j.mvr.2016.06.005.
  21. Sun, Y. et al. (2016). Toll-like receptor 4 promotes angiogenesis in pancreatic cancer via PI3K/AKT signaling. Exp Cell Res. doi:10.1016/j.yexcr.2016.07.009.
  22. Bid, H. K. et al. (2016). The Bromodomain BET inhibitor JQ1 suppresses tumor angiogenesis in models of childhood sarcoma. Mol Cancer Ther. doi:10.1158/1535-7163.
  23. Yun, H. M. et al. (2016). Magnetic nanocomposite scaffolds combined with static magnetic field in the stimulation of osteoblastic differentiation and bone formation. Biomaterials. 85:88-98.
  24. Chang, S. W. et al. (2016). Combined effects of mineral trioxide aggregate and human placental extract on rat pulp tissue and growth, differentiation and angiogenesis in human dental pulp cells. Acta Odontol Scand. doi:10.3109/00016357.2015.1120882.
  25. Sun, T. et al. (2016). Forkhead box protein k1 recruits TET1 to act as a tumor suppressor and is associated with MRI detection. Jpn J Clin Oncol. doi:10.1093/jjco/hyv185.
  26. Al-Mahrouki, A. A. et al. (2015). Ultrasound-stimulated microbubble enhancement of radiation treatments: endothelial cell function and mechanism.Oncoscience.2:944-957.
  27. Chang, S. W. et al. (2015). Odontoblastic differentiation, inflammatory response, and angiogenic potential of 4 calcium silicate–based cements: MicroMega MTA, ProRoot MTA, Retro MTA, and experimental calcium silicate cement. J Endod. doi: 10.1016/j.joen.2015.04.018.
  28. Zheng, D. et al. (2015). Silencing of miR-195 reduces diabetic cardiomyopathy in C57BL/6 mice. Diabetologia.  doi: 10.1007/s00125-015-3622-8.
  29. Yamanegi, K. et al. (2015). Sodium valproate, a histone deacetylase inhibitor, modulates the vascular endothelial growth inhibitor-mediated cell death in human osteosarcoma and vascular endothelial cells. Int J Oncol. doi: 10.3892/ijo.2015.2924. 
  30. Bae, W. J. et al. (2015). Effects of sodium tri-and hexametaphosphate on proliferation, differentiation, and angiogenic potential of human dental pulp cells. J Endod. doi: 10.1016/j.joen.2015.01.038.