Methylglyoxal Monoclonal Antibody

Methylglyoxal Monoclonal Antibody
  • Affinity purified mouse monoclonal
Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

Mouse Anti-Methylglyoxal Monoclonal Antibody
Catalog Number
STA-011
Size
100 µg
Detection
Immunoblot/IHC
Manual/Data Sheet Download
SDS Download
Price
$425.00
Recent Product Citations
  1. Kondanna, M.P. et al. (2025). Dietary methylglyoxal induces renal lipotoxicity primarily through adipose tissue dysfunction in mice fed normal or obesogenic high-fat diets. J Nutr Biochem. doi: 10.1016/j.jnutbio.2025.110244.
  2. Jeong, S. et al. (2025). Mitochondrial dysfunction by glyoxalase 1 deficiency disrupts definitive endoderm and alveolar development of human pluripotent stem cells. Exp Mol Med. doi: 10.1038/s12276-025-01524-y.
  3. Wan, Y.X. et al. (2024). Electroacupuncture facilitates vascular normalization by inhibiting Glyoxalase1 in endothelial cells to attenuate glycolysis and angiogenesis in triple-negative breast cancer. Cancer Lett. doi: 10.1016/j.canlet.2024.217094.
  4. Kong, L.R. et al. (2024). A glycolytic metabolite bypasses "two-hit" tumor suppression by BRCA2. Cell. 187(9):2269-2287.e16. doi: 10.1016/j.cell.2024.03.006.
  5. Lai, S.W.T. et al. (2024). Methylglyoxal-Derived Nucleoside Adducts Drive Vascular Dysfunction in a RAGE-Dependent Manner. Antioxidants (Basel). 13(1):85. doi: 10.3390/antiox13010085.
  6. Gambhir, P. et al. (2023). Elevated methylglyoxal levels inhibit tomato fruit ripening by preventing ethylene biosynthesis. Plant Physiol. doi: 10.1093/plphys/kiad142.
  7. Chandrakumar, S. et al. (2023). Subendothelial matrix stiffening by lysyl oxidase enhances RAGE-mediated retinal endothelial activation in diabetes. Diabetes. doi: 10.2337/db22-0761.
  8. Gao, Q. et al. (2023). Parkinsonism-Associated Protein DJ-1 Is an Antagonist, Not an Eraser, for Protein Glycation. Biochemistry. 62(6):1181-1190. doi: 10.1021/acs.biochem.3c00028.
  9. Borysiuk, K. et al. (2022). Glyoxalase I activity affects Arabidopsis sensitivity to ammonium nutrition. Plant Cell Rep. doi: 10.1007/s00299-022-02931-5.
  10. Smith, A.J. et al. (2022). GATD3A, a mitochondrial deglycase with evolutionary origins from gammaproteobacteria, restricts the formation of advanced glycation end products. BMC Biol. 20(1):68. doi: 10.1186/s12915-022-01267-6.
  11. Heremans, I.P. et al. (2022). Parkinson's disease protein PARK7 prevents metabolite and protein damage caused by a glycolytic metabolite. Proc Natl Acad Sci U S A. 119(4):e2111338119. doi: 10.1073/pnas.2111338119.
  12. Cimenci, C.E. et al. (2021). Combined Methylglyoxal Scavenger and Collagen Hydrogel Therapy Prevents Adverse Remodeling and Improves Cardiac Function Post-Myocardial Infarction. Adv. Funct. Mater. doi: 10.1002/adfm.202108630.
  13. Chou, C.K. et al. (2021). Methylglyoxal Levels in Human Colorectal Precancer and Cancer: Analysis of Tumor and Peritumor Tissue. Life. 11(12):1319. doi: 10.3390/life11121319.
  14. Pariano, M. et al. (2021). Defective Glyoxalase 1 Contributes to Pathogenic Inflammation in Cystic Fibrosis. Vaccines (Basel). 9(11):1311. doi: 10.3390/vaccines9111311.
  15. McEwen, J.M. et al. (2021). Synergistic sequence contributions bias glycation outcomes. Nat Commun. 12(1):3316. doi: 10.1038/s41467-021-23625-8.
  16. Kern, U. et al. (2021). Impact of DJ-1 and Helix 8 on the Proteome and Degradome of Neuron-Like Cells. Cells. 10(2):404. doi: 10.3390/cells10020404.
  17. Atzeni, I.M. et al. (2020). Is skin autofluorescence (SAF) representative of dermal advanced glycation endproducts (AGEs) in dark skin? A pilot study. Heliyon. 6(11):e05364. doi: 10.1016/j.heliyon.2020.e05364.
  18. Aragonès, G. et al. (2020). Autophagic receptor p62 protects against glycation-derived toxicity and enhances viability. Aging Cell. doi: 10.1111/acel.13257.
  19. Korça, E. et al. (2020). Circulating antibodies against age-modified proteins in patients with coronary atherosclerosis. Sci Rep. 10:17105. doi: 10.1038/s41598-020-73877-5.
  20. de Almeida, G.R.L. et al. (2020). Methylglyoxal-Mediated Dopamine Depletion, Working Memory Deficit, and Depression-Like Behavior Are Prevented by a Dopamine/Noradrenaline Reuptake Inhibitor. Mol Neurobiol. doi: 10.1007/s12035-020-02146-3.
  21. Kim, D. et al. (2020). Methylglyoxal-Induced Dysfunction in Brain Endothelial Cells via the Suppression of Akt/HIF-1α Pathway and Activation of Mitophagy Associated with Increased Reactive Oxygen Species. Antioxidants (Basel). 9(9):E820. doi: 10.3390/antiox9090820.
  22. Scumaci, D. et al. (2020). DJ-1 Proteoforms in Breast Cancer Cells: The Escape of Metabolic Epigenetic Misregulation. Cells. 9(9):E1968. doi: 10.3390/cells9091968.
  23. Kepchia, D. et al. (2020). Diverse proteins aggregate in mild cognitive impairment and Alzheimer's disease brain. Alzheimers Res Ther. 12(1):75. doi: 10.1186/s13195-020-00641-2.
  24. Rodrigues, D.C. et al. (2020). Methylglyoxal couples metabolic and translational control of Notch signalling in mammalian neural stem cells. Nat Commun. 11(1):2018. doi: 10.1038/s41467-020-15941-2.
  25. Zunkel, K. et al. (2020). Long-term intake of the reactive metabolite methylglyoxal is not toxic in mice. Food Chem Toxicol. doi: 10.1016/j.fct.2020.111333.
  26. Bellier, J. et al. (2020). Methylglyoxal Scavengers Resensitize KRAS-Mutated Colorectal Tumors to Cetuximab. Cell Rep. 30(5):1400-1416.e6. doi: 10.1016/j.celrep.2020.01.012.
  27. Luengo, A. et al. (2019). Reactive metabolite production is a targetable liability of glycolytic metabolism in lung cancer. Nat Commun. 10(1):5604. doi: 10.1038/s41467-019-13419-4.
  28. Proietti, S. et al. (2019). GLYI4 Plays A Role in Methylglyoxal Detoxification and Jasmonate-Mediated Stress Responses in Arabidopsis thaliana. Biomolecules. 9(10). pii: E635. doi: 10.3390/biom9100635.
  29. Wang, Y. et al. (2019). Methylglyoxal Triggers Human Aortic Endothelial Cell Dysfunction via Modulating KATP/MAPK pathway. Am J Physiol Cell Physiol. doi: 10.1152/ajpcell.00117.2018.
  30. Sudnitsyna, M.V. et al. (2019). Is the small heat shock protein HspB1 (Hsp27) a real and predominant target of methylglyoxal modification?. Cell Stress Chaperones. 24(2):419-426. doi: 10.1007/s12192-019-00975-3.