Methylglyoxal Monoclonal Antibody

Methylglyoxal Monoclonal Antibody
  • Affinity purified mouse monoclonal
Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

Mouse Anti-Methylglyoxal Monoclonal Antibody
Catalog Number
STA-011
Size
100 µg
Detection
Immunoblot/IHC
Manual/Data Sheet Download
SDS Download
Price
$395.00
Recent Product Citations
  1. Smith, A.J. et al. (2022). GATD3A, a mitochondrial deglycase with evolutionary origins from gammaproteobacteria, restricts the formation of advanced glycation end products. BMC Biol. 20(1):68. doi: 10.1186/s12915-022-01267-6.
  2. Heremans, I.P. et al. (2022). Parkinson's disease protein PARK7 prevents metabolite and protein damage caused by a glycolytic metabolite. Proc Natl Acad Sci U S A. 119(4):e2111338119. doi: 10.1073/pnas.2111338119.
  3. Cimenci, C.E. et al. (2021). Combined Methylglyoxal Scavenger and Collagen Hydrogel Therapy Prevents Adverse Remodeling and Improves Cardiac Function Post-Myocardial Infarction. Adv. Funct. Mater. doi: 10.1002/adfm.202108630.
  4. Chou, C.K. et al. (2021). Methylglyoxal Levels in Human Colorectal Precancer and Cancer: Analysis of Tumor and Peritumor Tissue. Life. 11(12):1319. doi: 10.3390/life11121319.
  5. Pariano, M. et al. (2021). Defective Glyoxalase 1 Contributes to Pathogenic Inflammation in Cystic Fibrosis. Vaccines (Basel). 9(11):1311. doi: 10.3390/vaccines9111311.
  6. McEwen, J.M. et al. (2021). Synergistic sequence contributions bias glycation outcomes. Nat Commun. 12(1):3316. doi: 10.1038/s41467-021-23625-8.
  7. Kern, U. et al. (2021). Impact of DJ-1 and Helix 8 on the Proteome and Degradome of Neuron-Like Cells. Cells. 10(2):404. doi: 10.3390/cells10020404.
  8. Atzeni, I.M. et al. (2020). Is skin autofluorescence (SAF) representative of dermal advanced glycation endproducts (AGEs) in dark skin? A pilot study. Heliyon. 6(11):e05364. doi: 10.1016/j.heliyon.2020.e05364.
  9. Aragonès, G. et al. (2020). Autophagic receptor p62 protects against glycation-derived toxicity and enhances viability. Aging Cell. doi: 10.1111/acel.13257.
  10. Korça, E. et al. (2020). Circulating antibodies against age-modified proteins in patients with coronary atherosclerosis. Sci Rep. 10:17105. doi: 10.1038/s41598-020-73877-5.
  11. de Almeida, G.R.L. et al. (2020). Methylglyoxal-Mediated Dopamine Depletion, Working Memory Deficit, and Depression-Like Behavior Are Prevented by a Dopamine/Noradrenaline Reuptake Inhibitor. Mol Neurobiol. doi: 10.1007/s12035-020-02146-3.
  12. Kim, D. et al. (2020). Methylglyoxal-Induced Dysfunction in Brain Endothelial Cells via the Suppression of Akt/HIF-1α Pathway and Activation of Mitophagy Associated with Increased Reactive Oxygen Species. Antioxidants (Basel). 9(9):E820. doi: 10.3390/antiox9090820.
  13. Scumaci, D. et al. (2020). DJ-1 Proteoforms in Breast Cancer Cells: The Escape of Metabolic Epigenetic Misregulation. Cells. 9(9):E1968. doi: 10.3390/cells9091968.
  14. Kepchia, D. et al. (2020). Diverse proteins aggregate in mild cognitive impairment and Alzheimer's disease brain. Alzheimers Res Ther. 12(1):75. doi: 10.1186/s13195-020-00641-2.
  15. Rodrigues, D.C. et al. (2020). Methylglyoxal couples metabolic and translational control of Notch signalling in mammalian neural stem cells. Nat Commun. 11(1):2018. doi: 10.1038/s41467-020-15941-2.
  16. Zunkel, K. et al. (2020). Long-term intake of the reactive metabolite methylglyoxal is not toxic in mice. Food Chem Toxicol. doi: 10.1016/j.fct.2020.111333.
  17. Bellier, J. et al. (2020). Methylglyoxal Scavengers Resensitize KRAS-Mutated Colorectal Tumors to Cetuximab. Cell Rep. 30(5):1400-1416.e6. doi: 10.1016/j.celrep.2020.01.012.
  18. Luengo, A. et al. (2019). Reactive metabolite production is a targetable liability of glycolytic metabolism in lung cancer. Nat Commun. 10(1):5604. doi: 10.1038/s41467-019-13419-4.
  19. Proietti, S. et al. (2019). GLYI4 Plays A Role in Methylglyoxal Detoxification and Jasmonate-Mediated Stress Responses in Arabidopsis thaliana. Biomolecules. 9(10). pii: E635. doi: 10.3390/biom9100635.
  20. Wang, Y. et al. (2019). Methylglyoxal Triggers Human Aortic Endothelial Cell Dysfunction via Modulating KATP/MAPK pathway. Am J Physiol Cell Physiol. doi: 10.1152/ajpcell.00117.2018.
  21. Sudnitsyna, M.V. et al. (2019). Is the small heat shock protein HspB1 (Hsp27) a real and predominant target of methylglyoxal modification?. Cell Stress Chaperones. 24(2):419-426. doi: 10.1007/s12192-019-00975-3.
  22. Koike, S. et al. (2019). Age-related alteration in the distribution of methylglyoxal and its metabolic enzymes in the mouse brain. Brain Res Bull. 144:164-170. doi: 10.1016/j.brainresbull.2018.11.025.
  23. Papadaki, M. et al. (2018). Diabetes with heart failure increases methylglyoxal modifications in the sarcomere, which inhibit function. JCI Insight. 3(20). pii: 121264. doi: 10.1172/jci.insight.121264.
  24. Antognelli, C. et al. (2018). Testosterone and Follicle Stimulating Hormone-Dependent Glyoxalase 1 Up-Regulation Sustains the Viability of Porcine Sertoli Cells through the Control of Hydroimidazolone- and Argpyrimidine-Mediated NF-κB Pathway. Am J Pathol. 188(11):2553-2563. doi: 10.1016/j.ajpath.2018.07.013.
  25. Coleman, V. et al. (2018). Partial involvement of Nrf2 in skeletal muscle mitohormesis as an adaptive response to mitochondrial uncoupling. Sci Rep. 8(1):2446. doi: 10.1038/s41598-018-20901-4.
  26. Mey, J.T. et al (2018). Dicarbonyl stress and glyoxalase enzyme system regulation in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 314(2):R181-R190. doi: 10.1152/ajpregu.00159.2017. 
  27. Ishida, Y.I. et al. (2017). Identification of an argpyrimidine-modified protein in human red blood cells from schizophrenic patients: A possible biomarker for diseases involving carbonyl stress. Biochem Biophys Res Commun. 493(1):573-577. doi: 10.1016/j.bbrc.2017.08.150.
  28. Jang, S. et al. (2017). Generation and characterization of mouse knockout for glyoxalase 1. Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2017.06.063. 
  29. Dafre, A.L. et al. (2017). Methylglyoxal-induced AMPK activation leads to autophagic degradation of thioredoxin 1 and glyoxalase 2 in HT22 nerve cells. Free Radic Biol Med. 108:270-279. doi: 10.1016/j.freeradbiomed.2017.03.028.
  30. Illien-Junger, S. et al. (2016). AGEs induce ectopic endochondral ossification in intervertebral discs. Eur. Cell Mater. 32:257-270.