96-Well Cellular Senescence Activity Assay

96-Well Cellular Senescence Activity Assay
  • Measure activity of senescence-associated ß-galactosidase
  • Quantitative results in a fluorescence plate reader


Frequently Asked Questions about this product

General FAQs about Cellular Senescence Assays

Email To BuyerPrint this PageCopy Link

Please contact your distributor for pricing.

96-Well Cellular Senescence Assay (SA β-Gal Activity)
Catalog Number
120 assays
Manual/Data Sheet Download
SDS Download
96-Well Cellular Senescence Assay Kit (SA β-Gal Activity)
Catalog Number
5 x 120 assays
Manual/Data Sheet Download
SDS Download
Product Details

Our Cellular Senescence Activity Assay provides an efficient method to measure Senescence Associated (SA) ß-galactosidase activity. SA-ß-Gal catalyzes the hydrolysis of X-gal, which produces a blue color in senescent cells. Quantify senescence using a fluorescence plate reader.

SA-ß-Gal activity in Senescent Human Lung Fibroblast HFL-1 Cells. Normal HFL-1 cells with different passage numbers were lysed. Lysates were allowed to incubate with SA-ß-Gal Substrate for 1 hr at 37ºC.

Recent Product Citations
  1. Shen, C.Y. et al. (2023). Unveiling the molecular basis of inflamm-aging induced by advanced glycation end products (AGEs)-modified human serum albumin (AGE-HSA) in patients with different immune-mediated diseases. Clin Immunol. 252:109655. doi: 10.1016/j.clim.2023.109655.
  2. Ambrosio, M.R. et al. (2023). Targeting G-quadruplex motifs interferes with differentiation of adipose-derived mesenchymal stem cells. Stem Cell Res Ther. 14(1):98. doi: 10.1186/s13287-023-03320-9.
  3. Choi, D. et al. (2023). Vertical Vibration of Mouse Osteoblasts Promotes Cellular Differentiation and Cell Cycle Progression and Induces Aging In Vitro. Biomedicines. 11(2):444. doi: 10.3390/biomedicines11020444.
  4. Nelczyk, A.T. et al. (2022). The nuclear receptor TLX (NR2E1) inhibits growth and progression of triple- negative breast cancer. Biochim Biophys Acta Mol Basis Dis. 1868(11):166515. doi: 10.1016/j.bbadis.2022.166515.
  5. Chelyapov, N. et al. (2022). Autologous NK cells propagated and activated ex vivo decrease senescence markers in human PBMCs. Biochem Biophys Rep. doi: 10.1016/j.bbrep.2022.101380.
  6. Furukawa, M. et al. (2022). Analysis of senescence in gingival tissues and gingival fibroblast cultures. Clin Exp Dent Res. doi: 10.1002/cre2.581.
  7. Kelleher, A.M. et al. (2021). Deficiency of PARP-1 and PARP-2 in the mouse uterus results in decidualization failure and pregnancy loss. Proc Natl Acad Sci U S A. 118(40):e2109252118. doi: 10.1073/pnas.2109252118.
  8. Deng, Z. et al. (2021). Biofunction of Polydopamine Coating in Stem Cell Culture. ACS Appl Mater Interfaces. doi: 10.1021/acsami.0c22565.
  9. Lee, Y.N. et al. (2021). Ultrasonic microbubble VEGF gene delivery improves angiogenesis of senescent endothelial progenitor cells. Sci Rep. 11(1):13449. doi: 10.1038/s41598-021-92754-3.
  10. Hirata, Y. et al. (2021). Advanced maternal age induces fetal growth restriction through decreased placental inflammatory cytokine expression and immune cell accumulation in mice. J Reprod Dev. doi: 10.1262/jrd.2021-034.
  11. Mehdi, S.J. et al. (2021). Normal and cancer fibroblasts differentially regulate TWIST1, TOX and cytokine gene expression in cutaneous T-cell lymphoma. BMC Cancer. 21(1):492. doi: 10.1186/s12885-021-08142-7.
  12. Bourdon, B. et al. (2021). Marine Collagen Hydrolysates Promote Collagen Synthesis, Viability and Proliferation While Downregulating the Synthesis of Pro-Catabolic Markers in Human Articular Chondrocytes. Int. J. Mol. Sci. 22(7):3693. doi: 10.3390/ijms22073693.
  13. Kong, C.S. et al. (2021). Embryo biosensing by uterine natural killer cells determines endometrial fate decisions at implantation. FASEB J. 35(4):e21336. doi: 10.1096/fj.202002217R.
  14. Baxley, R.M. et al. (2021). Bi-allelic MCM10 variants associated with immune dysfunction and cardiomyopathy cause telomere shortening. Nat Commun. 12(1):1626. doi: 10.1038/s41467-021-21878-x.
  15. Yamaguchi, S. et al. (2021). Characterization of an active LINE-1 in the naked mole-rat genome. Sci Rep. 11(1):5725. doi: 10.1038/s41598-021-84962-8.
  16. Bourdon, B. et al. (2021). Marine Collagen Hydrolysates Downregulate the Synthesis of Pro-Catabolic and Pro-Inflammatory Markers of Osteoarthritis and Favor Collagen Production and Metabolic Activity in Equine Articular Chondrocyte Organoids. Int J Mol Sci. 22(2):E580. doi: 10.3390/ijms22020580.
  17. Jiang, Y. et al. (2021). Histone H3K27 methyltransferase EZH2 and demethylase JMJD3 regulate hepatic stellate cells activation and liver fibrosis. Theranostics. 11(1):361-378. doi: 10.7150/thno.46360.
  18. Mogilenko, D.A. et al. (2020). Comprehensive Profiling of an Aging Immune System Reveals Clonal GZMK+ CD8+ T Cells as Conserved Hallmark of Inflammaging. Immunity. doi: 10.1016/j.immuni.2020.11.005.
  19. Setoguchi, Y. et al. (2020). Functional assessment of retinal pigment epithelium cell transplants with various degrees of pigmentation for age-related macular degeneration. Kawasaki Medical Journal. 46:49-58. doi: 10.11482/KMJ-E202046049.
  20. Rostami, A. et al. (2020). Senescence, Necrosis, and Apoptosis Govern Circulating Cell-free DNA Release Kinetics. Cell Rep. 31(13):107830. doi: 10.1016/j.celrep.2020.107830.
  21. Pacifici, F. et al. (2020). Prdx6 Plays a Main Role in the Crosstalk Between Aging and Metabolic Sarcopenia. Antioxidants (Basel). 9(4). pii: E329. doi: 10.3390/antiox9040329.
  22. Lin, X. et al. (2020). Excessive oxidative stress in cumulus granulosa cells induced cell senescence contributes to endometriosis-associated infertility. Redox Biol. 30:101431. doi: 10.1016/j.redox.2020.101431.
  23. Ohigashi, T. et al. (2019). Protective effect of phosphatidylcholine on lysophosphatidylcholine-induced cellular senescence in cholangiocyte. J Hepatobiliary Pancreat Sci. doi: 10.1002/jhbp.684.
  24. Takagi, H. et al. (2019). Blockade of γ-Glutamylcyclotransferase Enhances Docetaxel Growth Inhibition of Prostate Cancer Cells. Anticancer Res. 39(9):4811-4816. doi: 10.21873/anticanres.13666.
  25. Tencerova, M. et al. (2019). Obesity-Associated Hypermetabolism and Accelerated Senescence of Bone Marrow Stromal Stem Cells Suggest a Potential Mechanism for Bone Fragility. Cell Rep. 27(7):2050-2062.e6. doi: 10.1016/j.celrep.2019.04.066.
  26. Morsczeck, C. et al. (2019). Short telomeres correlate with a strong induction of cellular senescence in human dental follicle cells. BMC Mol Cell Biol. 20(1):5. doi: 10.1186/s12860-019-0185-4.
  27. Cho, S.Y. et al. (2019). Oxytocin Alleviates Cellular Senescence through Oxytocin Receptor-Mediated ERK/Nrf2 Signalling. Br J Dermatol. doi: 10.1111/bjd.17824.
  28. Cao, J. et al. (2019). Combining CDK4/6 inhibition with taxanes enhances anti-tumor efficacy by sustained impairment of pRB-E2F pathways in squamous cell lung cancer. Oncogene. doi: 10.1038/s41388-019-0708-7.
  29. Mehdi, S.J. et al. (2019). Mesenchymal stem cells gene signature in high-risk myeloma bone marrow linked to suppression of distinct IGFBP2-expressing small adipocytes. Br J Haematol. 184(4):578-593. doi: 10.1111/bjh.15669.
  30. Velusami, C.C. et al. (2018). Polar extract of Curcuma longa protects cartilage homeostasis: possible mechanism of action. Inflammopharmacology. 26(5):1233-1243. doi: 10.1007/s10787-017-0433-1.