96-Well Cellular Senescence Activity Assay

96-Well Cellular Senescence Activity Assay
  • Measure activity of senescence-associated ß-galactosidase
  • Quantitative results in a fluorescence plate reader


Frequently Asked Questions about this product

General FAQs about Cellular Senescence Assays

Email To BuyerPrint this PageCopy Link

Please contact your distributor for pricing.

96-Well Cellular Senescence Assay (SA β-Gal Activity)
Catalog Number
120 assays
Manual/Data Sheet Download
SDS Download
96-Well Cellular Senescence Assay Kit (SA β-Gal Activity)
Catalog Number
5 x 120 assays
Manual/Data Sheet Download
SDS Download
96-Well Cellular Senescence Assay Kit (SA-β-gal Activity), Trial Size
Catalog Number
24 assays
Manual/Data Sheet Download
SDS Download
Product Details

Our Cellular Senescence Activity Assay provides an efficient method to measure Senescence Associated (SA) ß-galactosidase activity. SA-ß-Gal catalyzes the hydrolysis of X-gal, which produces a blue color in senescent cells. Quantify senescence using a fluorescence plate reader.

SA-ß-Gal activity in Senescent Human Lung Fibroblast HFL-1 Cells. Normal HFL-1 cells with different passage numbers were lysed. Lysates were allowed to incubate with SA-ß-Gal Substrate for 1 hr at 37ºC.

Recent Product Citations
  1. Pacifici, F. et al. (2020). Prdx6 Plays a Main Role in the Crosstalk Between Aging and Metabolic Sarcopenia. Antioxidants (Basel). 9(4). pii: E329. doi: 10.3390/antiox9040329.
  2. Lin, X. et al. (2020). Excessive oxidative stress in cumulus granulosa cells induced cell senescence contributes to endometriosis-associated infertility. Redox Biol. 30:101431. doi: 10.1016/j.redox.2020.101431.
  3. Ohigashi, T. et al. (2019). Protective effect of phosphatidylcholine on lysophosphatidylcholine-induced cellular senescence in cholangiocyte. J Hepatobiliary Pancreat Sci. doi: 10.1002/jhbp.684.
  4. Takagi, H. et al. (2019). Blockade of γ-Glutamylcyclotransferase Enhances Docetaxel Growth Inhibition of Prostate Cancer Cells. Anticancer Res. 39(9):4811-4816. doi: 10.21873/anticanres.13666.
  5. Tencerova, M. et al. (2019). Obesity-Associated Hypermetabolism and Accelerated Senescence of Bone Marrow Stromal Stem Cells Suggest a Potential Mechanism for Bone Fragility. Cell Rep. 27(7):2050-2062.e6. doi: 10.1016/j.celrep.2019.04.066.
  6. Morsczeck, C. et al. (2019). Short telomeres correlate with a strong induction of cellular senescence in human dental follicle cells. BMC Mol Cell Biol. 20(1):5. doi: 10.1186/s12860-019-0185-4.
  7. Cho, S.Y. et al. (2019). Oxytocin Alleviates Cellular Senescence through Oxytocin Receptor-Mediated ERK/Nrf2 Signalling. Br J Dermatol. doi: 10.1111/bjd.17824.
  8. Cao, J. et al. (2019). Combining CDK4/6 inhibition with taxanes enhances anti-tumor efficacy by sustained impairment of pRB-E2F pathways in squamous cell lung cancer. Oncogene. doi: 10.1038/s41388-019-0708-7.
  9. Mehdi, S.J. et al. (2019). Mesenchymal stem cells gene signature in high-risk myeloma bone marrow linked to suppression of distinct IGFBP2-expressing small adipocytes. Br J Haematol. 184(4):578-593. doi: 10.1111/bjh.15669.
  10. Velusami, C.C. et al. (2018). Polar extract of Curcuma longa protects cartilage homeostasis: possible mechanism of action. Inflammopharmacology. 26(5):1233-1243. doi: 10.1007/s10787-017-0433-1.
  11. Perla, V. et al. (2018). Effect of ghost pepper on cell proliferation, apoptosis, senescence and global proteomic profile in human renal adenocarcinoma cells. PLoS One. 13(10):e0206183. doi: 10.1371/journal.pone.0206183.
  12. Rana, K. et al. (2018). Bone marrow neutrophil aging in sickle cell disease mice is associated with impaired osteoblast functions. Biochem Biophys Rep. 16:110-114. doi: 10.1016/j.bbrep.2018.10.009.
  13. Oja, S. et al. (2018). Automated image analysis detects aging in clinical-grade mesenchymal stromal cell cultures. Stem Cell Res Ther. 9(1):6. doi: 10.1186/s13287-017-0740-x.
  14. Xu, R. et al. (2017). Tumor suppressor p53 links ceramide metabolism to DNA damage response through alkaline ceramidase 2. Cell Death Differ. 25(5):841-856. doi: 10.1038/s41418-017-0018-y.
  15. Jeong, J. H. et al. (2017). Inhibitory effect of vitamin C on intrinsic aging in human dermal fibroblasts and hairless mice. Food Sci Biotechnol. 27(2):555-564. doi: 10.1007/s10068-017-0252-6.
  16. Empl, M.T. et al. (2018). Effects of a Grapevine Shoot Extract Containing Resveratrol and Resveratrol Oligomers on Intestinal Adenoma Development in Mice: In Vitro and In Vivo Studies. Mol Nutr Food Res. 62(2). doi: 10.1002/mnfr.201700450.
  17. Tofiño-Vian, M. et al. (2017). Extracellular Vesicles from Adipose-Derived Mesenchymal Stem Cells Downregulate Senescence Features in Osteoarthritic Osteoblasts. Oxid Med Cell Longev. 2017:7197598. doi: 10.1155/2017/7197598.
  18. Block, T.J. et al. (2017). Restoring the quantity and quality of elderly human mesenchymal stem cells for autologous cell-based therapies. Stem Cell Res Ther. 8(1):239. doi: 10.1186/s13287-017-0688-x.
  19. Park, J.E. et al. (2017). Standardized Kaempferia parviflora Extract Inhibits Intrinsic Aging Process in Human Dermal Fibroblasts and Hairless Mice by Inhibiting Cellular Senescence and Mitochondrial Dysfunction. Evid Based Complement Alternat Med. 2017:6861085. doi: 10.1155/2017/6861085.
  20. Zhang, X.T. et al (2016). Cryptosporidium parvum infection attenuates the ex vivo propagation of murine intestinal enteroids. Physiol Rep. doi: 10.14814/phy2.13060.
  21. Platas, J. et al. (2016). Anti-senescence and anti-inflammatory effects of the C-terminal moiety of PTHrP peptides in OA osteoblasts. J Gerontol A Biol Sci Med Sci. doi:10.1093/gerona/glw100.
  22. Sato, K. et al. (2016). Exosomes in liver pathology. J Hepatol. doi:10.1016/j.jhep.2016.03.004.
  23. Kim, D. S. et al. (2016). Cell culture density affects the proliferation activity of human adipose tissue stem cells. Cell Biochem Funct.doi:10.1002/cbf.3158.
  24. Hu, W. et al. (2015). Mechanistic investigation of bone marrow suppression associated with palbociclib and its differentiation from cytotoxic chemotherapies. Clin Cancer Res. doi:10.1158/1078-0432.CCR-15-1421.
  25. Chang, Z. et al. (2015). Ascorbic acid provides protection for human chondrocytes against oxidative stress. Mol Med Rep. doi:10.3892/mmr.2015.4231.
  26. Hirano, T. et al. (2015). A novel interaction between FLICE-associated huge protein (FLASH) and E2A regulates cell proliferation and cellular senescence via tumor necrosis factor (TNF)-alpha-p21WAF1/CIP1 axis. PLoS One10:e0133205.
  27. Liao, C. K. et al. (2015). Depletion of B cell CLL/lymphoma 11B gene expression represses glioma cell growth. Mol Neurobiol. doi:10.1007/s12035-015-9231-1.
  28. Shimizu, R. et al. (2015). Cholangiocyte senescence caused by lysophosphatidylcholine as a potential implication in carcinogenesisJ Hepatobiliary Pancreat Sci.doi: 10.1002/jhbp.256.
  29. Klinkhammer, B. M. et al. (2014). Mesenchymal stem cells from rats with chronic kidney disease exhibit premature senescence and loss of regenerative potential. PLoS One. 9:e92115-e92115.
  30. Li, Y. et al. (2014). Inhibition of APE1/Ref-1 redox activity rescues human retinal pigment epithelial cells from oxidative stress and reduces choroidal neovascularizationRedox Biol.  2:485-494.