• Detect as little as 30 pg/mL of green fluorescent protein
  • Simpler and faster than FACS analysis
  • GFP ELISA Kit will detect GFP, BFP, CFP, and YFP from Aequorea victoria


Frequently Asked Questions about this product

Video: Color Development in an ELISA

Email To BuyerPrint this PageCopy Link

Please contact your distributor for pricing.

Catalog Number
96 assays
Manual/Data Sheet Download
SDS Download
Catalog Number
5 x 96 assays
Manual/Data Sheet Download
SDS Download
Product Details

Most imaging studies of rGFP are qualitative, and GFP quantification by FACS is time-consuming and expensive. Our GFP ELISA Kit measures green fluorescent protein in a standard microplate reader. Assay is sensitive to 30 pg/mL.

Standard Curve Generated with the GFP ELISA Kit.

Recent Product Citations
  1. Hata, Y. et al. (2022). A novel VCP modulator KUS121 exerts renoprotective effects in ischemia-reperfusion injury with retaining ATP and restoring ERAD-processing capacity. Am J Physiol Renal Physiol. 322(5):F577-F586. doi: 10.1152/ajprenal.00392.2021.
  2. Woods, V.M.A. et al. (2022). Targeting transgenic proteins to alpha granules for platelet-directed gene therapy. Mol Ther Nucleic Acids. doi: 10.1016/j.omtn.2021.12.038.
  3. Czajka, M. et al. (2020). Mosaic Recombinant Adeno-associated Virus Vector rAAV/DJ/CAG for Targeted Gene Delivery to Melanoma Cells Metastasized to the Lung. Anticancer Res. 40(8):4425-4444. doi: 10.21873/anticanres.14448.
  4. Rodier, J.T. et al. (2019). Linear Polyethylenimine-DNA Nanoconstruct for Corneal Gene Delivery. J Ocul Pharmacol Ther. 35(1):23-31. doi: 10.1089/jop.2018.0024.
  5. Kwon, K.C. et al. (2019). An evaluation of microalgae as a recombinant protein oral delivery platform for fish using green fluorescent protein (GFP). Fish Shellfish Immunol. 87:414-420. doi: 10.1016/j.fsi.2019.01.038.
  6. Yang, B. et al. (2018). Comparative studies of the serum half-life extension of a protein via site-specific conjugation to a species-matched or -mismatched albumin. Biomater Sci. 6(8):2092-2100. doi: 10.1039/c8bm00456k.
  7. Obajemu, A.A. et al. (2017). IFN-λ4 Attenuates Antiviral Responses by Enhancing Negative Regulation of IFN Signaling. J Immunol. 199(11):3808-3820. doi: 10.4049/jimmunol.1700807.
  8. Shrestha, R.P. et al (2017). Development of a silicon limitation inducible expression system for recombinant protein production in the centric diatoms Thalassiosira pseudonana and Cyclotella cryptica. Microb Cell Fact. 16(1):145. doi: 10.1186/s12934-017-0760-3.
  9. Fowler, K.A. et al. (2017). Targeting the Canonical Nuclear Factor-κB Pathway with a High-Potency IKK2 Inhibitor Improves Outcomes in a Mouse Model of Idiopathic Pneumonia Syndrome. Biol Blood Marrow Transplant. doi: 10.1016/j.bbmt.2017.01.083.
  10. Gordon, E. D. et al. (2016). Alternative splicing of interleukin-33 and type 2 inflammation in asthma. Proc Natl Acad Sci U S A. 113:8765-8770.
  11. Yang, B. et al. (2016). Site-specific albumination as an alternative to PEGylation for the enhanced serum half-life in vivo. Biomacromolecules. doi:10.1021/acs.biomac.6b00238.
  12. Vance, M. et al. (2016). AAV gene therapy for MPS1-associated corneal blindness. Sci Rep. doi:10.1038/srep22131.
  13. Johnson, K. A. et al. (2016). The Ebola Virus matrix protein, VP40, requires phosphatidylinositol 4, 5-bisphosphate (PI (4, 5) P2) for extensive oligomerization at the plasma membrane and viral egress.  Sci Rep. 6:19125.
  14. Chen, Z. et al. (2016). GADD45B mediates podocyte injury in zebrafish by activating the ROS-GADD45B-p38 pathway. Cell Death Dis. doi:10.1038/cddis.2015.300.
  15. Chen, C. C. et al. (2015). Changes in DNA methylation are associated with the development of drug resistance in cervical cancer cells. Cancer Cell Int. 15:98.
  16. Borjan, B. et al. (2015). The Aplidin analogs PM01215 and PM02781 inhibit angiogenesis in vitro and in vivo. BMC Cancer. 15:738.
  17. Gee, H. Y. et al. (2015). KANK deficiency leads to podocyte dysfunction and nephrotic syndrome. J Clin Invest. doi: 10.1172/JCI79504
  18. Vemula, S. V. et al. (2015). HIV-1 induced Nuclear Factor IB (NF-IB) expression negatively regulates HIV-1 replication through interaction with the long terminal repeat region. Viruses.  7:543-558.
  19. Zhang, Y. et al. (2015). Characterization of the promoter of Grapevine vein clearing virus. J Gen Virol96:165-169.
  20. Ott, L. & Carson, S. (2014). Immunological tools: Engaging students in the use and analysis of flow cytometry and enzyme‐linked immunosorbent assay (ELISA). Biochem Mol Biol Educ.  42:382-397.
  21. Fulton, L. M. et al. (2014). Altered T-cell entry and egress in the absence of Coronin 1A attenuates murine acute graft versus host disease.Eur J Immunol. 44:1662-1671.
  22. Baez, A. et al. (2014).  Production of recombinant protein by a novel oxygen-induced system in Escherichia coli. Microb Cell Fact. 13:50.
  23. Huhtala, T. et al. (2014). Biodistribution and antitumor effect of Cetuximab-targeted lentivirusNucl Med Biol. 41:77-83.
  24. Anyaegbu, C.  C. et al. (2014). Chemotherapy enhances cross-presentation of nuclear tumor antigens. PLoS One.  9:e107894.
  25. Sendra, L. et al. (2014). Low RNA translation activit limits the efficacy of hydrodynamic gene transfer to pig liver in vivo. J Gene Med. 16:179-192.
  26. Mango, R. et al. (2014). C-C Chemokine Receptor 5 on Pulmonary Mesenchymal Cells Promotes Experimental Metastasis via the Induction of Erythroid Differentiation Regulator 1. Mol. Cancer. Res. 12:274-282.
  27. Mitchell, A. et al. (2014). Promyelocytic Leukemia Protein Is a Cell-Intrinsic Factor Inhibiting Parvovirus DNA Replication. J. Virol. 88:925-936.
  28. Coghill, J.M. et al. (2013). CC chemokine Receptor 8 Potentiates Donor Treg Survival and is Critical for the Prevention of Murine Graft-Versus-Host Disease. Blood. 122:825-836.
  29. Pedersen, J. et al. (2012). Glucose Metabolism is Altered After Loss of L Cells and α-cells but Not Influenced by Loss of K Cells. Am J Physiol Endocrinol Metab. 304:E60-E73.
  30. Zhou, W. et al. (2012).Inducible Podocyte Injury and Proteinuria in Transgenic Zebrafish. J. Am. Soc. Nephrol. 23:1039-1047.