NIH3T3 Reporter Cells

NIH3T3 Reporter Cells
  • This cell line stably expresses GFP

 

Frequently Asked Questions about this product

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

NIH3T3/GFP Cell Line
Catalog Number
AKR-214
Size
1 vial
Detection
Fluorescence
Manual/Data Sheet Download
SDS Download
Price
$485.00
Recent Product Citations
  1. Yang, X. et al. (2025). 3D Microtumors Representing Ovarian Cancer Minimal Residual Disease Respond to the Fatty Acid Oxidation Inhibitor Perhexiline. Adv Healthc Mater. doi: 10.1002/adhm.202404072.
  2. Ismail, M.F. (2024). High-Throughput Production of Gelatin-Based Touch-Spun Nanofiber for Biomedical Applications. Adv. Eng. Mater. doi: 10.1002/adem.202401022.
  3. Bertillot, F. et al. (2024). Compressive stress triggers fibroblasts spreading over cancer cells to generate carcinoma in situ organization. Commun Biol. 7(1):184. doi: 10.1038/s42003-024-05883-6.
  4. Li, S. et al. (2024). Load-bearing columns inspired fabrication of ductile and mechanically enhanced BSA hydrogels. Int J Biol Macromol. 261(Pt 2):129910. doi: 10.1016/j.ijbiomac.2024.129910.
  5. Laganà, M. et al. (2024). Optimized protocol for 3D epithelial cultures supporting human papillomavirus replication. STAR Protoc. 5(1):102828. doi: 10.1016/j.xpro.2023.102828.
  6. Li, S. et al. (2023). An injectable, self-healing and degradable hydrogel scaffold as a functional biocompatible material for tissue engineering applications. J Mater Sci. 58:6710-6726. doi: 10.1007/s10853-023-08393-8.
  7. Arellano, L. G. et al. (2023). Light excitation of gold Nanorod-Based hybrid nanoplatforms for simultaneous bimodal phototherapy. J. Mol. Liq. doi: 10.1016/j.molliq.2023.121511.
  8. Han, X. et al. (2023). Ligand-tethered lipid nanoparticles for targeted RNA delivery to treat liver fibrosis. Nat Commun. 14(1):75. doi: 10.1038/s41467-022-35637-z.
  9. Gangolphe, L. et al. (2021). Electrospun microstructured PLA-based scaffolds featuring relevant anisotropic, mechanical and degradation characteristics for soft tissue engineering. Mater Sci Eng C Mater Biol Appl. doi: 10.1016/j.msec.2021.112339.
  10. Guidotti, G. et al. (2020). Regenerated wool keratin-polybutylene succinate nanofibrous mats for drug delivery and cells culture. Polym Degrad Stab. doi: 10.1016/j.polymdegradstab.2020.109272.
  11. Jung, W.H. et al. (2020). Force-dependent extracellular matrix remodeling by early-stage cancer cells alters diffusion and induces carcinoma-associated fibroblasts. Biomaterials. 234:119756. doi: 10.1016/j.biomaterials.2020.119756.
  12. Decataldo, F. et al. (2019). Organic Electrochemical Transistors for Real‐Time Monitoring of In Vitro Silver Nanoparticle Toxicity. Advanced Biosystems. doi: 10.1002/adbi.201900204.
  13. Thönnes, S. et al. (2019). Success and efficiency of cell seeding in Avian Tendon Xenografts – A promising alternative for tendon and ligament reconstruction. J Orthop. doi: 10.1016/j.jor.2019.09.010.
  14. Yu, D. et al. (2019). Microfluidic preparation, shrinkage, and surface modification of monodispersed alginate microbeads for 3D cell culture. RSC Adv. 9:11101–11110. doi: 10.1039/C9RA01443H.
  15. Weems, A.C. et al. (2018). Improving the Oxidative Stability of Shape Memory Polyurethanes Containing Tertiary Amines by the Presence of Isocyanurate Triols. Macromolecules. doi: 10.1021/acs.macromol.8b01925.
  16. Liu, S. et al. (2018). Cellular interactions with hydrogel microfibers synthesized via interfacial tetrazine ligation. Biomaterials. 180:24-35. doi: 10.1016/j.biomaterials.2018.06.042.
  17. Barbalinardo, M. et al. (2018). Data-Matrix Technology for Multiparameter Monitoring of Cell Cultures. Small Methods. 2(4), 1700377. doi: 10.1002/smtd.201700377.
  18. Maglione, M.S. et al. (2018). Fluid Mixing for Low-Power 'Digital Microfluidics' Using Electroactive Molecular Monolayers. Small. 14(10). doi: 10.1002/smll.201703344.
  19. Sanchez-Ramos, J. et al (2018). Chitosan-Mangafodipir nanoparticles designed for intranasal delivery of siRNA and DNA to brain. Journal of Drug Delivery Science and Technology. 43: 453-460.
  20. Weems, A.C. et al. (2017). Shape memory polyurethanes with oxidation-induced degradation: in vivo and in vitro correlations for endovascular material applications. Acta Biomater. doi: 10.1016/j.actbio.2017.06.030.
  21. Bouchlaka MN, et al. (2017). Human Mesenchymal Stem Cell-Educated Macrophages Are a Distinct High IL-6-Producing Subset that Confer Protection in Graft-versus-Host-Disease and Radiation Injury Models. Biol Blood Marrow Transplant. pii: S1083-8791(17)30306-3. doi: 10.1016/j.bbmt.2017.02.018. 
  22. Pearson, R. A. et al. (2016). Donor and host photoreceptors engage in material transfer following transplantation of post-mitotic photoreceptor precursors. Nat Commun. doi:10.1038/ncomms13029.
  23. Nash, L. D. et al. (2016). Cold plasma reticulation of shape memory embolic tissue scaffolds. Macromol Rapid Commun. doi:10.1002/marc.201600268.
  24. Castleberry, S. A. et al. (2016). Nanolayered siRNA delivery platforms for local silencing of CTGF reduce cutaneous scar contraction in third-degree burns. Biomaterials. doi:10.1016/j.biomaterials.2016.04.007.
  25. Castleberry, S. A. et al. (2015). Self-assembled wound dressings silence MMP-9 and improve diabetic wound healing in vivo. Adv Mater. doi:10.1002/adma.201503565.
  26. Peak, C. W. et al. (2015). Elastomeric cell-laden nanocomposite microfibers for engineering complex tissues. Cell Mol Bioeng. doi:10.1007/s12195-015-0406-7.
  27. Tassoni, A. et al. (2015). Molecular mechanisms mediating retinal reactive gliosis following bone marrow mesenchymal stem cell transplantation. Stem Cells. doi: 10.1002/stem.2095.
  28. Scott, C. M. et al. (2015).  3D cell entrapment as a function of the weight percent of peptide-amphiphile hydrogels.  Langmuirdoi:10.1021/acs.langmuir.5b00196.
  29. Jo, W. et al. (2014). Microfluidic fabrication of cell-derived nanovesicles as endogenous RNA carriers. Lab Chip. 14:1261-1269.