Phagocytosis Assay, Zymosan Substrate

Phagocytosis Assay, Zymosan Substrate
  • Fully quantify phagocytosis with no manual cell counting
  • High-throughput 96-well format
  • Convenient quantitation in a standard microplate reader

NOTE: This assay is suitable only for adherent phagocytes. For suspension cells please use one of our other Phagocytosis Assay Kits with either E. coli or Red Blood Cell substrates.

Frequently Asked Questions about this product

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

CytoSelect™ 96-Well Phagocytosis Assay, Zymosan Substrate
Catalog Number
CBA-224
Size
96 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$595.00
CytoSelect™ 96-Well Phagocytosis Assay, Zymosan Substrate
Catalog Number
CBA-224-5
Size
5 x 96 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$2,560.00
Product Details

Phagocytosis can be assayed by measuring the engulfment of a cell "substrate". The most common substrates used in phagocytosis assays are erythrocytes (RBCs) and zymosan particles. However, traditional assays require tedious cell counting under a microscope.

Our CytoSelect™ 96-Well Phagocytosis Assay, Zymosan Substrate provides a more accurate, user-friendly, high-throughput alternative to the standard phagocytosis assay. The assay may be adapted for use with 24-well or 48-well plates.

Particle Engulfment with the CytoSelect™ 96-Well Phagocytosis Assay (Zymosan Substrate).

Recent Product Citations
  1. Vay, S.U. et al. (2020). The impact of hyperpolarization-activated cyclic nucleotide-gated (HCN) and voltage-gated potassium KCNQ/Kv7 channels on primary microglia function. J Neuroinflammation. 17(1):100. doi: 10.1186/s12974-020-01779-4.
  2. Zuo, P. et al. (2020). Protease-activated receptor 2 deficiency in hematopoietic lineage protects against myocardial infarction through attenuated inflammatory response and fibrosis. Biochem Biophys Res Commun. doi: 10.1016/j.bbrc.2020.03.077.
  3. Trivedi, M.K. et al. (2020). Solid and liquid state characterization of tetrahydrocurcumin using XRPD, FT-IR, DSC, TGA, LC-MS, GC-MS, NMR and its biological activities. J Pharm Anal. doi: 10.1016/j.jpha.2020.02.005.
  4. Dashdulam, D. et al. (2020). Osteopontin heptamer peptide containing the RGD motif enhances the phagocytic function of microglia. Biochem Biophys Res Commun. pii: S0006-291X(20)30175-3. doi: 10.1016/j.bbrc.2020.01.100.
  5. Rabenstein, M. et al. (2020). Crosstalk between stressed brain cells: direct and indirect effects of ischemia and aglycemia on microglia. J Neuroinflammation. 17(1):33. doi: 10.1186/s12974-020-1697-8.
  6. Abumaree, M.H. et al. (2019). Decidua Basalis Mesenchymal Stem Cells Favor Inflammatory M1 Macrophage Differentiation In Vitro. Cells. 8(2). pii: E173. doi: 10.3390/cells8020173.
  7. Kim, S. et al. (2019). Immune-enhancing screening of fourteen plants on murine macrophage RAW 264.7 cells. Trop J Pharm Res. 18(1): 86. doi: 10.4314/tjpr.v18i1.13.
  8. Al-Kushi, A.G. et al. (2018). Antioxidant effect of royal jelly on immune status of hyperglycemic rats. Phcog Mag. 14:528-33. doi: 10.4103/pm.pm_87_18.
  9. Vay, S.U. et al. (2018). The plasticity of primary microglia and their multifaceted effects on endogenous neural stem cells in vitro and in vivo. J Neuroinflammation. 15(1):226. doi: 10.1186/s12974-018-1261-y.
  10. Trivedi, M.K. et al. (2017). Immunomodulatory potential of nanocurcumin-based formulation. Inflammopharmacol. 25 (6): 609-619.
  11. Sapkota, M. et al. (2016). Malondialdehyde-acetaldehyde-adducted surfactant protein alters macrophage functions through Scavenger Receptor A. Alcoholism Clin. Exp. Res. 40:2563-2572.
  12. Rawat, P. & Spector, S. A. (2016). Development and characterization of a human microglia cell model of HIV-1 infection. J Neurovirol. doi:10.1007/s13365-016-0472-1.
  13. Beringer, P. M. et al. (2015). Rhesus θ-defensin-1 (RTD-1) exhibits in vitro and in vivo activity against cystic fibrosis strains of Pseudomonas aeruginosa. J Antimicrob Chemother. doi: 10.1093/jac/dkv301.
  14. Lee, S. G. et al. (2015). Immunostimulatory polysaccharide isolated from the leaves of Diospyros kaki Thumb modulate macrophage via TLR2Int J Biol Macromol. 79:971-982.
  15. Jung, J. Y. et al. (2015). Lactobacillus sakei K040706 evokes immunostimulatory effects on macrophages through TLR 2-mediated activation. Int Immunopharmacol.  doi:10.1016/j.intimp.2015.05.037.
  16. Zhang, H. et al. (2015). Functional analysis and transcriptomic profiling of iPSC-derived macrophages and their application in modeling mendelian disease. Circ Res.  doi:10.1161/CIRCRESAHA.117.305860.
  17. Fiorcari, S. et al. (2015). Lenalidomide interferes with tumor-promoting properties of nurse-like cells in chronic lymphocytic leukemia. Haematologica. 100:253-262.
  18. Liao, W. T. et al. (2014). Cyclic GMP-dependent protein kinase II is necessary for macrophage M1 polarization and phagocytosis via toll-like receptor 2. J Mol Med (Berl). doi: 10.1007/s00109-014-1236-0.
  19. Kasat, K. et al. (2014). Anti-inflammatory actions of endogenous and exogenous interleukin-10 versus glucocorticoids on macrophage functions of the newly born. J Perinatol. 34:380-385.
  20. Haselow, K. et al. (2013). Bile Acids PKA-Dependently Induce a Switch of the IL-10/IL-12 Ratio and Reduce Proinflammatory Capability of Human Macrophages. J. Leukoc. Biol. 94:1253-1264.
  21. Pierce, L.M. et al. (2012). Effect Of Heavy Metal Tungsten Alloy Particles On Oxidative Product Formation And Phagocytosis By Lung Macrophages. Am. J. Respir. Crit. Care Med. 185:A4666.
  22. Polancec, D.S.et al.(2012). Azithromycin Drives in Vitro GM-CSF/IL-4-Induced Differentiation of Human Blood Monocytes Toward Dendritic-like Cells with Regulatory Properties. J Leukoc Biol. 91:229-243.