pMXs-GFP Retroviral Control Vector

pMXs-GFP Retroviral Control Vector
Email To BuyerPrint this PageCopy Link

Please contact your distributor for pricing.

pMXs-GFP Retroviral Vector
Catalog Number
10 µg
Manual/Data Sheet Download
SDS Download
Map Download
Sequence Download
Recent Product Citations
  1. Takeshita, M. et al. (2022). Potent SARS-CoV-2 neutralizing antibodies with therapeutic effects in two animal models. iScience. doi: 10.1016/j.isci.2022.105596.
  2. Nagappan, A. et al. (2022). Caveolin-1-ACE2 axis modulates xenobiotic metabolism-linked chemoresistance in ovarian clear cell carcinoma. Cell Biol Toxicol. doi: 10.1007/s10565-022-09733-1.
  3. Demirci, G. et al. (2021). (Bis)phosphonic Acid-Functionalized Poly(ethyleneimine)–Poly(amido amine)s for Selective In Vitro Transfection of Osteosarcoma Cells. ACS Appl. Polym. Mater. doi: 10.1021/acsapm.1c00297.
  4. Nguyen, C. et al. (2021). Use of constitutive and inducible oncogene-containing iPSCs as surrogates for transgenic mice to study breast oncogenesis. Stem Cell Res Ther. 12(1):301. doi: 10.1186/s13287-021-02285-x.
  5. Kim, J. & Moon. Y. (2021). Mucosal ribosomal stress-induced PRDM1 promotes chemoresistance via stemness regulation. Commun Biol. 4(1):543. doi: 10.1038/s42003-021-02078-1.
  6. Petrova, S.C. et al. (2020). Regulation of breast cancer oncogenesis by the cell of origin’s differentiation state. Oncotarget. 11(43):3832-3848. doi: 10.18632/oncotarget.27783.
  7. Kayagaki, N. et al. (2019). IRF2 transcriptionally induces GSDMD expression for pyroptosis. Sci Signal. 12(582). pii: eaax4917. doi: 10.1126/scisignal.aax4917.
  8. Terada, Y. et al. (2019). Human Pluripotent Stem Cell-Derived Tumor Model Uncovers the Embryonic Stem Cell Signature as a Key Driver in Atypical Teratoid/Rhabdoid Tumor. Cell Rep. 26(10):2608-2621.e6. doi: 10.1016/j.celrep.2019.02.009.
  9. Baird, A. et al. (2019). Biocompatible 3D printed thermoplastic scaffolds for osteoblast differentiation of equine iPS cells. Tissue Eng Part C Methods. doi: 10.1089/ten.TEC.2018.0343.
  10. Thekkeparambil Chandrabose, S. et al. (2018). Amenable epigenetic traits of dental pulp stem cells underlie high capability of xeno-free episomal reprogramming. Stem Cell Res Ther. 9(1):68. doi: 10.1186/s13287-018-0796-2.
  11. Yakhkeshi, S. et al. (2018). In vitro improvement of quail primordial germ cell expansion through activation of TGF-beta signaling pathway. J Cell Biochem. 119(6):4309-4319. doi: 10.1002/jcb.26618.
  12. Takaya, T. et al. (2017). Autonomous xenogenic cell fusion of murine and chick skeletal muscle myoblasts. Anim Sci J. doi: 10.1111/asj.12884.
  13. Kodaka, Y. et al. (2017). Spin infection enables efficient gene delivery to muscle stem cells. Biotechniques. 63(2):72-76. doi: 10.2144/000114576.
  14. Verusingam, N.D. et al. (2017). Susceptibility of Human Oral Squamous Cell Carcinoma (OSCC) H103 and H376 cell lines to Retroviral OSKM mediated reprogramming. PeerJ. 5:e3174. doi: 10.7717/peerj.3174.
  15. Qu, Y. et al. (2016). NLRP3 recruitment by NLRC4 during Salmonella infection. J Exp Med. doi:10.1084/jem.20132234.
  16. Malaver-Ortega, L. F. et al. (2015). Inducing pluripotency in cattle. Methods Mol Biol. doi:10.1007/978-1-4939-2848-4_6.
  17. Parreno, J. et al. (2015). Efficient, low-cost nucleofection of passaged chondrocytes. Cartilage. doi:10.1177/1947603515609399.
  18. Baird, A. E. G. et al. (2015). Derivation of canine induced pluripotent stem cells. Reproduction in Domestic Animals. DOI: 10.1111/rda.12562.
  19. Gutiérrez-Fernández, A. et al. (2015). Loss of MT1-MMP causes cell senescence and nuclear defects which can be reversed by retinoic acid.  EMBO J. doi:10.15252/embj.201490594.
  20. Wattanapanitch, M. et al. (2014). Dual Small-Molecule Targeting of SMAD Signaling Stimulates Human Induced Pluripotent Stem Cells toward Neural Lineages. PLoS One. 9:e106952.
  21. Gallaher, Z. R. et al. (2014). Neural proliferation in the dorsal root ganglia of the adult rat following capsaicin-induced neuronal death. J Comp Neurol. 522:3295-3307.
  22. Wahlestedt, M. et al. (2013). An Epigenetic Component of Hematopoietic Stem Cell Aging Amenable to Reprogramming into a Young State. Blood. 121:4257-4264.
  23. Yi, L. et al. (2012). Multiple Roles of p53-Related Pathways in Somatic Cell Reprogramming and Stem Cell Differentiation. Cancer Res. 72: 5635-5645.