pMXs-Puro Retroviral Expression Vector

pMXs-Puro Retroviral Expression Vector
Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

pMXs-Puro Retroviral Vector
Catalog Number
RTV-012
Size
10 µg
Detection
N/A
Manual/Data Sheet Download
SDS Download
Map Download
Sequence Download
Price
$495.00
Recent Product Citations
  1. Yamano, K. et al. (2020). Critical role of mitochondrial ubiquitination and the OPTN-ATG9A axis in mitophagy. J Cell Biol. 219(9):e201912144. doi: 10.1083/jcb.201912144.
  2. Zheng, J. et al. (2020). Long-term expansion of directly reprogrammed keratinocyte-like cells and in vitro reconstitution of human skin. J Biomed Sci. 27(1):56. doi: 10.1186/s12929-020-00642-1.
  3. Tanaka, Y. et al. (2020). LPIAT1/MBOAT7 depletion increases triglyceride synthesis fueled by high phosphatidylinositol turnover. Gut. pii: gutjnl-2020-320646. doi: 10.1136/gutjnl-2020-320646.
  4. Yasuda, S. et al. (2020). Stress- and ubiquitylation-dependent phase separation of the proteasome. Nature. doi: 10.1038/s41586-020-1982-9.
  5. Takadate, Y. et al. (2020). Niemann-Pick C1 Heterogeneity of Bat Cells Controls Filovirus Tropism. Cell Rep. 30(2):308-319.e5. doi: 10.1016/j.celrep.2019.12.042.
  6. Tanaka, M. et al. (2020). Generation of Rat Monoclonal Antibodies Specific for Human Stromal Cell-Derived Factor-2. Monoclon Antib Immunodiagn Immunother. doi: 10.1089/mab.2019.0043.
  7. Kanemaru, K. et al. (2019). Clec10a regulates mite-induced dermatitis. Sci Immunol. 4(42). pii: eaax6908. doi: 10.1126/sciimmunol.aax6908.
  8. Koyano, F. et al. (2019). Parkin-mediated ubiquitylation redistributes MITOL/March5 from mitochondria to peroxisomes. EMBO Rep. doi: 10.15252/embr.201947728.
  9. Anisimov, S. et al. (2019). G3BP1 inhibits ubiquitinated protein aggregations induced by p62 and USP10. Sci Rep. 9(1):12896. doi: 10.1038/s41598-019-46237-1.
  10. Hirose, Y. et al. (2019). Whole-Genome Analysis of Human Papillomavirus Type 16 Prevalent in Japanese Women with or without Cervical Lesions. Viruses. 11(4). pii: E350. doi: 10.3390/v11040350.
  11. Jastrzebski, S. et al. (2019). Protease-Activated Receptor 1 Deletion Causes Enhanced Osteoclastogenesis in Response to Inflammatory Signals through a Notch2-Dependent Mechanism. J Immunol. pii: ji1801032. doi: 10.4049/jimmunol.1801032.
  12. Hashimoto, H. et al. (2019). Cardiac Reprogramming Factors Synergistically Activate Genome-wide Cardiogenic Stage-Specific Enhancers. Cell Stem Cell. pii: S1934-5909(19)30121-3. doi: 10.1016/j.stem.2019.03.022.
  13. Princely Abudu, Y. et al. (2019). NIPSNAP1 and NIPSNAP2 Act as "Eat Me" Signals for Mitophagy. Dev Cell. pii: S1534-5807(19)30224-2. doi: 10.1016/j.devcel.2019.03.013.
  14. Hafner-Bratkovič, I. et al. (2018). NLRP3 lacking the leucine-rich repeat domain can be fully activated via the canonical inflammasome pathway. Nat Commun. 9(1):5182. doi: 10.1038/s41467-018-07573-4.
  15. Morel, A. et al. (2018). Methods to Investigate the Role of Rho GTPases in Osteoclast Function. Methods Mol Biol. 1821:219-233. doi: 10.1007/978-1-4939-8612-5_15.
  16. Murata, T. et al. (2018). Regucalcin confers resistance to amyloid-β toxicity in neuronally differentiated PC12 cells. FEBS Open Bio. 8(3):349-360. doi: 10.1002/2211-5463.12374.
  17. Zhang, C. et al. (2018). Cellular Approaches in Investigating Argonaute2-Dependent RNA Silencing. Methods Mol Biol. 1680:205-215. doi: 10.1007/978-1-4939-7339-2_14.
  18. Furuyama, W. et al. (2016). Fcγ-receptor IIa-mediated Src Signaling Pathway is Essential for the Antibody-Dependent Enhancement of Ebola Virus Infection. PLOS Pathogens. doi: 10.1371/journal.ppat.1006139.
  19. Li, Y.Y. et al. (2017). Exome and genome sequencing of nasopharynx cancer identifies NF-κB pathway activating mutations. Nat Commun. doi: 10.1038/ncomms14121.
  20. Mori, S. et al (2017). Human Papillomavirus 16 E6 Upregulates APOBEC3B via the TEAD Transcription Factor. J Virol. doi: 10.1128/JVI.02413-16. 
  21. Yamashita, S. et al. (2016). Mitochondrial division occurs concurrently with autophagosome formation but independently of Dro1 during mitophagy. J. Cell Biol. 215:649-665.
  22. Arisawa, K. et al (2016). Saturated fatty acid in the phospholipid monolayer contributes to the formation of large lipid droplets. Biochem. Biophys. Res. Comm. 480:641-647.
  23. Jin, W. J. et al. (2016). Notch2 signaling promotes osteoclast resorption via activation of PYK2. Cell Signal. 28:357-365.
  24. Hedberg, M. L. et al. (2015). Genetic landscape of metastatic and recurrent head and neck squamous cell carcinoma. J Clin Invest. doi:10.1172/JCI82066.
  25. Yeon, J. T. et al. (2015). Arginase 1 is a negative regulator of osteoclast differentiation. Amino Acids.  doi:10.1007/s00726-015-2112-0.
  26. Yeon, J. T. et al. (2015). KCNK1 inhibits osteoclastogenesis by blocking the Ca2+ oscillation and JNK–NFATc1 signaling axis. J Cell Sci. 128:3411-3419.
  27. Mori, S. et al. (2015). Identification of APOBEC3B promoter elements responsible for activation by human papillomavirus type 16 E6Biochem Biophys Res Commun.  doi:10.1016/j.bbrc.2015.03.068. 
  28. Lui, V. W. et al. (2014). Frequent mutation of receptor protein tyrosine phosphatases provides a mechanism for STAT3 hyperactivation in head and neck cancer. Proc Natl Acad Sci U S A. 111:1114-1119.
  29. Chan, E. C. et al. (2014). Mastocytosis associated with a rare germline KIT K509I mutation displays a well-differentiated mast cell phenotype. J Allergy Clin Immunol. 134:178-187.
  30. Chmielecki, J. et al. (2014). Comprehensive Genomic Profiling of Pancreatic Acinar Cell Carcinomas Identifies Recurrent RAF Fusions and Frequent Inactivation of DNA Repair Genes. Cancer Discov. 4:1398-1405.