Recombinant GFP

Recombinant GFP
  • Includes 6xHis-tag at C-terminus
  • Provided at 100 μg/vial at 1.0 mg/mL in 1X PBS
Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

Recombinant EGFP
Catalog Number
STA-201
Size
100 µg
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$315.00
Recombinant EGFP
Catalog Number
STA-201-5
Size
5 x 100 µg
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$1,260.00
Recent Product Citations
  1. Nguyen, M.T. et al. (2022). Structural determination of an antibody that specifically recognizes polyethylene glycol with a terminal methoxy group. Commun Chem. 5(1):88. doi: 10.1038/s42004-022-00709-0.
  2. Rhea, K.A. et al. (2022). Variability in cell-free expression reactions can impact qualitative genetic circuit characterization. Synth Biol (Oxf). 7(1):ysac011. doi: 10.1093/synbio/ysac011.
  3. Guzman-Chavez, F. et al. (2022).  Constructing Cell-Free Expression Systems for Low-Cost Access. ACS Synth Biol. 11(3):1114-1128. doi: 10.1021/acssynbio.1c00342.
  4. Ikegami, H. et al. (2021). Evaluation of electron radiation damage to green fluorescent protein. Ultramicroscopy. doi: 10.1016/j.ultramic.2021.113272.
  5. Garenne, D. et al. (2021). Cell-free gene expression. Nat Rev Methods Primers. doi: 10.1038/s43586-021-00046-x.
  6. Akiba, K. et al. (2020). Cathodoluminescence of green fluorescent protein exhibits the redshifted spectrum and the robustness. Sci Rep. 10(1):17342. doi: 10.1038/s41598-020-74367-4.
  7. Garenne, D. et al. (2020). Analysis of cytoplasmic and membrane molecular crowding in genetically programmed synthetic cells. Biomacromolecules. doi: 10.1021/acs.biomac.0c00513.
  8. Marshall, R. et al. (2019). Quantitative modeling of transcription and translation of an all-E. coli cell-free system. Sci Rep. 9(1):11980. doi: 10.1038/s41598-019-48468-8.
  9. Garenne, D. et al. (2019). Characterization of the all-E. coli transcription-translation system myTXTL by mass spectrometry. Rapid Commun Mass Spectrom. doi: 10.1002/rcm.8438.
  10. Hansen, M.M.K. et al. (2018). Cytoplasmic Amplification of Transcriptional Noise Generates Substantial Cell-to-Cell Variability. Cell Syst. 7(4):384-397.e6. doi: 10.1016/j.cels.2018.08.002.
  11. Hołówka J, et al. (2017). HupB Is a Bacterial Nucleoid-Associated Protein with an Indispensable Eukaryotic-Like Tail. MBio. 8(6). pii: e01272-17. doi: 10.1128/mBio.01272-17.
  12. Marshall, R. et al. (2017). Short DNA containing χ sites enhances DNA stability and gene expression in E. coli cell-free transcription–translation systems. Biotechnol. Bioeng. doi: 10.1002/bit.26333.
  13. Kirschbaum, M. et al. (2015). Horizontal RNA transfer mediates platelet-induced hepatocyte proliferation. Blood. 126:798-806.
  14. Caschera, F. & Noireaux, V. (2015). Preparation of amino acid mixtures for cell-free expression systems. Biotechniques. 58:40-43.
  15. Caschera, F. & Noireaux, V. (2015). A cost-effective polyphosphate-based metabolism fuels an all E. coli cell-free expression system. Metab Eng. 27:29-37.
  16. Aranda, A. et al. (2014). A quick and efficient method to generate mammalian stable cell lines based on a novel inducible alphavirus DNA/RNA layered system. Cell Mol Life Sci. 71:4637-4651.
  17. Caschera, F. & Noireaux, V. (2014). Synthesis of 2.3 mg/ml of protein with an all Escherichia coli cell-free transcription-translation system. Biochimie. 99:162-168.
  18. Sokolova, E. et al. (2013). Enhanced Transcription Rates in Membrane-Free Protocells Formed by Coacervation of Cell Lysate. PNAS. 110: 11692-11697.