96-Well Cell Transformation Assays, Soft Agar with Cell Recovery

96-Well Cell Transformation Assays, Soft Agar with Cell Recovery
  • Proprietary modified soft agar medium
  • Fully quantify cell transformation with no manual cell counting
  • Results in 7-8 days, not 3 weeks 
  • Recover cells from soft agar medium for further downstream analysis

 

Frequently Asked Questions about this product

General FAQs about Cell Transformation Assays

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

CytoSelect™ 96-Well Cell Transformation Assay, Cell Recovery Compatible
Catalog Number
CBA-135
Size
96 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$680.00
CytoSelect™ 96-Well Cell Transformation Assay, Cell Recovery Compatible
Catalog Number
CBA-135-5
Size
5 x 96 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$2,930.00
CytoSelect™ 96-Well Cell Transformation Assay, Cell Recovery Compatible
Catalog Number
CBA-140
Size
96 assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$715.00
CytoSelect™ 96-Well Cell Transformation Assay, Cell Recovery Compatible
Catalog Number
CBA-140-5
Size
5 x 96 assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$3,045.00
Product Details

CytoSelect™ 96-Well Cell Transformation Assays (Cell Recovery Compatible) provide a robust system for detecting transformed cells, screening cell transformation inhibitors, and determining in vitro drug sensitivity. A proprietary modified soft agar matrix allows you to either quantify cells using the included fluorescent dye, or recover the cells for further analysis.

These cell transformation assays are designed and optimized for 96-well plates, but can easily be adapted for use in 48, 24, 12 or 6-well plates. Both colorimetric and fluorometric formats are available.

CytoSelect™ 96-Well Cell Transformation Assay Principle.

Viability of Recovered Cells. HeLa and 293 cells were cultured for 6 days according to the assay protocol. Cells were recovered and the cell viability was determined by trypan blue exclusion.

Recent Product Citations
  1. Wakae, K. et al. (2020). EBV-LMP1 induces APOBEC3s and mitochondrial DNA hypermutation in nasopharyngeal cancer. Cancer Med. doi: 10.1002/cam4.3357 (#CBA-135).
  2. Lv, W. et al. (2020). Reprogramming of Ovarian Granulosa Cells by YAP1 Leads to Development of High-Grade Cancer with Mesenchymal Lineage and Serous Features. Sci Bull. doi: 10.1016/j.scib.2020.03.040 (#CBA-135).
  3. Murata, M. et al. (2020). OVOL2-Mediated ZEB1 Downregulation May Prevent Promotion of Actinic Keratosis to Cutaneous Squamous Cell Carcinoma. J Clin Med. 9(3). pii: E618. doi: 10.3390/jcm9030618 (#CBA-135).
  4. Hernandez, D.M. et al. (2020). IPF pathogenesis is dependent upon TGFβ induction of IGF-1. FASEB J. doi: 10.1096/fj.201901719RR (#CBA-135).
  5. Sand, A. et al. (2019). WEE1 inhibitor, AZD1775, overcomes trastuzumab resistance by targeting cancer stem-like properties in HER2-positive breast cancer. Cancer Lett. 472:119-131. doi: 10.1016/j.canlet.2019.12.023 (#CBA-135).
  6. Lim, S. et al. (2019). Targeting the interaction of AIMP2-DX2 with HSP70 suppresses cancer development. Nat Chem Biol. 16(1):31-41. doi: 10.1038/s41589-019-0415-2 (#CBA-135).
  7. Ha, Y. et al. (2019). Induction of Lysosome‐associated Protein Transmembrane 4 Beta via Sulfatase 2 Enhances Autophagic Flux in Liver Cancer Cells. Hepatol Commun. doi: 10.1002/hep4.1429 (#CBA-135).
  8. Mawaribuchi, S, et al. (2019). The rBC2LCN-positive subpopulation of PC-3 cells exhibits cancer stem-like properties. Biochem Biophys Res Commun. pii: S0006-291X(19)30994-5. doi: 10.1016/j.bbrc.2019.05.108 (#CBA-135).
  9. Oushy, S. et al. (2018). Glioblastoma multiforme-derived extracellular vesicles drive normal astrocytes towards a tumour-enhancing phenotype. Philos Trans R Soc Lond B Biol Sci. 373(1737). pii: 20160477. doi: 10.1098/rstb.2016.0477 (#CBA-135).
  10. Kumar, A. et al. (2018). The Human Cytomegalovirus Strain DB Activates Oncogenic Pathways in Mammary Epithelial Cells. EBioMedicine. 30:167-183. doi: 10.1016/j.ebiom.2018.03.015 (#CBA-135).
  11. van der Toorn, M. et al. (2018). The biological effects of long-term exposure of human bronchial epithelial cells to total particulate matter from a candidate modified-risk tobacco product. Toxicol In Vitro. 50:95-108. doi: 10.1016/j.tiv.2018.02.019 (#CBA-140).
  12. Lim, S.K. et al. (2016). Wnt signaling promotes breast cancer by blocking ITCH-mediated degradation of YAP/TZA transcriptional coactivator WBP2. Cancer Res. 76:6278-6289 (#CBA-135).
  13. Kumar, A. et al. (2016). Tumor control by human cytomegalovirus in a murine model of hepatocellular carcinoma. Mol Ther. doi:10.1038/mto.2016.12 (#CBA-135).
  14. Montalbano, M. et al. (2016). Modeling of hepatocytes proliferation isolated from proximal and distal zones from human hepatocellular carcinoma lesion. PLoS One 11:e0153613 (#CBA-140).
  15. Mardin, B. R. et al. (2015). A cell-based model system links chromothripsis with hyperploidyMol Syst Biol. 11:828 (#CBA-135).
  16. Monot, M. et al. (2015). Early steps of Jaagsiekte sheep retrovirus-mediated cell transformation involve the interaction between env and the RALBP1 cellular protein. J Virol. 89:8462-8473 (#CBA-135).
  17. Bon, H. et al. (2015). Salt-inducible kinase 2 regulates mitotic progression and transcription in prostate cancer. Mol Cancer Res. 13:620-635 (#CBA-135).
  18. Fatemi, M. et al. (2014). Epigenetic silencing of CHD5, a novel tumor-suppressor gene, occurs in early colorectal cancer stages. Cancer. 120:172-180 (#CBA-135).
  19. Park, H. et al. (2014). Distinct roles of DKK1 and DKK2 in tumor angiogenesisAngiogenesis. 17:221-234 (#CBA-135).
  20. Wang, X. et al. (2014).  Commensal Bacteria Drive Endogenous Transformation and Tumour Stem Cell Marker Expression Through a Bystander Effect. Gut. 10.1136/gutjnl-2014-307213 (#CBA-135).
  21. Bottero, V. et al. (2013). Kaposi's Sarcoma-Associated Herpesvirus-Positive Primary Effusion Lymphoma Tumor Formation in NOD/SCID Mice Is Inhibited by Neomycin and Neamine Blocking Angiogenin's Nuclear Translocation. J. Virol. 87:11806-11820 (#CBA-135).
  22. Singh, R. et al. (2013). Increasing the Complexity of Chromatin: Functionally Distinct Roles for Replication-Dependent Histone H2A Isoforms in Cell Proliferation and Carcinogenesis. Nucleic Acids Res. 10.1093/nar/gkt736 (#CBA-135).
  23. Shukla, A. et al. (2013). Extracellular Signal–Regulated Kinase 5: A Potential Therapeutic Target for Malignant Mesotheliomas. Clin. Cancer Res. 19:2071-2083 (#CBA-135).
  24. Niccoli, S. et al. (2012).The Asian-American E6 Variant Protein of Human Papillomavirus 16 Alone Is Sufficient To Promote Immortalization, Transformation, and Migration of Primary Human Foreskin Keratinocytes. J. Virol. 86:12384-12396 (#CBA-135).
  25. Hong, S.W. et al. (2012). Ring Finger Protein 149 Is an E3 Ubiquitin Ligase Active on Wild-type v-Raf Murine Sarcoma Viral Oncogene Homolog B1 (BRAF). J. Biol. Chem. 287:24017-24025 (#CBA-135).
  26. Lee, H.J. et al. (2012). Chemokine (C-X-C Motif) Ligand 12 Is Associated with Gallbladder Carcinoma Progression and Is a Novel Independent Poor Prognostic Factor. Clin. Cancer. Res. 18:3270-3280 (#CBA-135). 
  27. Chapeau, E.A. et al.(2012).Ecotropic Viral Integration Site 1 (EVI1) Regulates Multiple Cellular Processes Important for Cancer and is a Synergistic Partner for FOS Protein in Invasive Tumors. Proc Natl Acad Sci 109:2168-2173.(#CBA-135)
  28. Lim, S.K. et al. (2011). Tyrosine Phosphorylation of Transcriptional Coactivator WW-Domain Binding Protein 2 Regulates Estrogen Receptor alpha Function in Breast Cancer via the Wnt Pathway. FASEB J. 25:3004-3018. (#CBA-135)
  29. Mathew, B. et al. (2011). The Novel Role of the Mu Opioid Receptor in Lung Cancer Progression: A Laboratory Investigation. Anesth. Analg. 112:558-567 (#CBA-135).
  30. Hirata, H. et al. (2010). Role of secreted Frizzled-related protein3 in Human Renal Cell Carcinoma. Cancer Res. 70:1896-1905 (#CBA-135).