96-Well Cell Transformation Assays, Soft Agar with Cell Recovery

96-Well Cell Transformation Assays, Soft Agar with Cell Recovery
  • Proprietary modified soft agar medium
  • Fully quantify cell transformation with no manual cell counting
  • Results in 7-8 days, not 3 weeks 
  • Recover cells from soft agar medium for further downstream analysis

 

Frequently Asked Questions about this product

General FAQs about Cell Transformation Assays

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

CytoSelect™ 96-Well Cell Transformation Assay, Cell Recovery Compatible
Catalog Number
CBA-135
Size
96 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$745.00
CytoSelect™ 96-Well Cell Transformation Assay, Cell Recovery Compatible
Catalog Number
CBA-135-5
Size
5 x 96 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$3,240.00
CytoSelect™ 96-Well Cell Transformation Assay, Cell Recovery Compatible
Catalog Number
CBA-140
Size
96 assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$780.00
CytoSelect™ 96-Well Cell Transformation Assay, Cell Recovery Compatible
Catalog Number
CBA-140-5
Size
5 x 96 assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$3,375.00
Product Details

CytoSelect™ 96-Well Cell Transformation Assays (Cell Recovery Compatible) provide a robust system for detecting transformed cells, screening cell transformation inhibitors, and determining in vitro drug sensitivity. A proprietary modified soft agar matrix allows you to either quantify cells using the included fluorescent dye, or recover the cells for further analysis.

These cell transformation assays are designed and optimized for 96-well plates, but can easily be adapted for use in 48, 24, 12 or 6-well plates. Both colorimetric and fluorometric formats are available.

CytoSelect™ 96-Well Cell Transformation Assay Principle.

Viability of Recovered Cells. HeLa and 293 cells were cultured for 6 days according to the assay protocol. Cells were recovered and the cell viability was determined by trypan blue exclusion.

Recent Product Citations
  1. El Baba, R. et al. (2023). Polyploidy, EZH2 upregulation, and transformation in cytomegalovirus-infected human ovarian epithelial cells. Oncogene. doi: 10.1038/s41388-023-02813-4 (#CBA-135).
  2. Hiroki, H. et al. (2023). Targeting Poly(ADP)ribose polymerase in BCR/ABL1-positive cells. Sci Rep. 13(1):7588. doi: 10.1038/s41598-023-33852-2 (#CBA-135).
  3. El Baba, R. et al. (2023). EZH2-Myc driven glioblastoma elicited by cytomegalovirus infection of human astrocytes. Oncogene. doi: 10.1038/s41388-023-02709-3 (#CBA-135).
  4. Kantisin, S. et al. (2022). In utero arsenic exposure increases DNA damage and gene expression changes in umbilical cord mesenchymal stem cells (UC-MSCs) from newborns as well as in UC-MSC differentiated hepatocytes. Toxicol Rep. doi: 10.1016/j.toxrep.2022.09.002 (#CBA-135).
  5. Paul, M. et al. (2022). Nitric-Oxide Synthase trafficking inducer (NOSTRIN) is an emerging negative regulator of colon cancer progression. BMC Cancer. 22(1):594. doi: 10.1186/s12885-022-09670-6 (#CBA-140).
  6. Nehme, Z. et al. (2022). Polyploid giant cancer cells, EZH2 and Myc upregulation in mammary epithelial cells infected with high-risk human cytomegalovirus. EBioMedicine. 80:104056. doi: 10.1016/j.ebiom.2022.104056 (#CBA-135).
  7. Kim, D.G. et al. (2022). AIMP2-DX2 provides therapeutic interface to control KRAS-driven tumorigenesis. Nat Commun. 13(1):2572. doi: 10.1038/s41467-022-30149-2 (#CBA-135).
  8. Kondo, M. et al. (2021). Safety and efficacy of human juvenile chondrocyte-derived cell sheets for osteochondral defect treatment. NPJ Regen Med. 6(1):65. doi: 10.1038/s41536-021-00173-9 (#CBA-140).
  9. Buranarom, A. et al. (2021). Dichloromethane increases mutagenic DNA damage and transformation ability in cholangiocytes and enhances metastatic potential in cholangiocarcinoma cell lines. Chem Biol Interact. doi: 10.1016/j.cbi.2021.109580 (#CBA-135).
  10. Nehme, Z. et al. (2021). Polyploid giant cancer cells, stemness and epithelial-mesenchymal plasticity elicited by human cytomegalovirus. Oncogene. doi: 10.1038/s41388-021-01715-7 (#CBA-135).
  11. Andrade, F. et al. (2021). Polymeric micelles targeted against CD44v6 receptor increase niclosamide efficacy against colorectal cancer stem cells and reduce circulating tumor cells in vivo. J Control Release. 331:198-212. doi: 10.1016/j.jconrel.2021.01.022 (#CBA-135).
  12. Wakae, K. et al. (2020). EBV-LMP1 induces APOBEC3s and mitochondrial DNA hypermutation in nasopharyngeal cancer. Cancer Med. doi: 10.1002/cam4.3357 (#CBA-135).
  13. Lv, W. et al. (2020). Reprogramming of Ovarian Granulosa Cells by YAP1 Leads to Development of High-Grade Cancer with Mesenchymal Lineage and Serous Features. Sci Bull. doi: 10.1016/j.scib.2020.03.040 (#CBA-135).
  14. Murata, M. et al. (2020). OVOL2-Mediated ZEB1 Downregulation May Prevent Promotion of Actinic Keratosis to Cutaneous Squamous Cell Carcinoma. J Clin Med. 9(3). pii: E618. doi: 10.3390/jcm9030618 (#CBA-135).
  15. Hernandez, D.M. et al. (2020). IPF pathogenesis is dependent upon TGFβ induction of IGF-1. FASEB J. doi: 10.1096/fj.201901719RR (#CBA-135).
  16. Sand, A. et al. (2019). WEE1 inhibitor, AZD1775, overcomes trastuzumab resistance by targeting cancer stem-like properties in HER2-positive breast cancer. Cancer Lett. 472:119-131. doi: 10.1016/j.canlet.2019.12.023 (#CBA-135).
  17. Lim, S. et al. (2019). Targeting the interaction of AIMP2-DX2 with HSP70 suppresses cancer development. Nat Chem Biol. 16(1):31-41. doi: 10.1038/s41589-019-0415-2 (#CBA-135).
  18. Ha, Y. et al. (2019). Induction of Lysosome‐associated Protein Transmembrane 4 Beta via Sulfatase 2 Enhances Autophagic Flux in Liver Cancer Cells. Hepatol Commun. doi: 10.1002/hep4.1429 (#CBA-135).
  19. Mawaribuchi, S, et al. (2019). The rBC2LCN-positive subpopulation of PC-3 cells exhibits cancer stem-like properties. Biochem Biophys Res Commun. pii: S0006-291X(19)30994-5. doi: 10.1016/j.bbrc.2019.05.108 (#CBA-135).
  20. Oushy, S. et al. (2018). Glioblastoma multiforme-derived extracellular vesicles drive normal astrocytes towards a tumour-enhancing phenotype. Philos Trans R Soc Lond B Biol Sci. 373(1737). pii: 20160477. doi: 10.1098/rstb.2016.0477 (#CBA-135).
  21. Kumar, A. et al. (2018). The Human Cytomegalovirus Strain DB Activates Oncogenic Pathways in Mammary Epithelial Cells. EBioMedicine. 30:167-183. doi: 10.1016/j.ebiom.2018.03.015 (#CBA-135).
  22. van der Toorn, M. et al. (2018). The biological effects of long-term exposure of human bronchial epithelial cells to total particulate matter from a candidate modified-risk tobacco product. Toxicol In Vitro. 50:95-108. doi: 10.1016/j.tiv.2018.02.019 (#CBA-140).
  23. Lim, S.K. et al. (2016). Wnt signaling promotes breast cancer by blocking ITCH-mediated degradation of YAP/TZA transcriptional coactivator WBP2. Cancer Res. 76:6278-6289 (#CBA-135).
  24. Kumar, A. et al. (2016). Tumor control by human cytomegalovirus in a murine model of hepatocellular carcinoma. Mol Ther. doi:10.1038/mto.2016.12 (#CBA-135).
  25. Montalbano, M. et al. (2016). Modeling of hepatocytes proliferation isolated from proximal and distal zones from human hepatocellular carcinoma lesion. PLoS One 11:e0153613 (#CBA-140).
  26. Mardin, B. R. et al. (2015). A cell-based model system links chromothripsis with hyperploidyMol Syst Biol. 11:828 (#CBA-135).
  27. Monot, M. et al. (2015). Early steps of Jaagsiekte sheep retrovirus-mediated cell transformation involve the interaction between env and the RALBP1 cellular protein. J Virol. 89:8462-8473 (#CBA-135).
  28. Bon, H. et al. (2015). Salt-inducible kinase 2 regulates mitotic progression and transcription in prostate cancer. Mol Cancer Res. 13:620-635 (#CBA-135).
  29. Fatemi, M. et al. (2014). Epigenetic silencing of CHD5, a novel tumor-suppressor gene, occurs in early colorectal cancer stages. Cancer. 120:172-180 (#CBA-135).
  30. Park, H. et al. (2014). Distinct roles of DKK1 and DKK2 in tumor angiogenesisAngiogenesis. 17:221-234 (#CBA-135).