96-Well Cell Transformation Assays, Standard Soft Agar

96-Well Cell Transformation Assays, Standard Soft Agar
  • Uses traditional 3D soft agar matrix
  • Fully quantify cell transformation with no manual cell counting
  • Results in 7-8 days, not 3 weeks

 

Frequently Asked Questions about this product

General FAQs about Cell Transformation Assays

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

CytoSelect™ 96-Well Cell Transformation Assay, Soft Agar Colony Formation
Catalog Number
CBA-130
Size
96 assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$595.00
CytoSelect™ 96-Well Cell Transformation Assay, Soft Agar Colony Formation
Catalog Number
CBA-130-5
Size
5 x 96 assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$2,515.00
CytoSelect™ 96-Well Cell Transformation Assay, Soft Agar Colony Formation, Trial Size
Catalog Number
CBA-130-T
Size
24 assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$295.00
Product Details

Our CytoSelect™ 96-Well Cell Transformation Assay (Soft Agar Colony Formation) is suitable for measuring cell transformation where no downstream analysis is required. Cells are incubated in a semisolid agar medium for 7-8 days. The cells are then solubilized, lysed and detected using the included fluorescent dye in a fluorometric plate reader.

Cells incubated using this assay may not be recovered intact. For recovery of intact viable cells, consider our Soft Agar Assay with Cell Recovery.

CytoSelect™ 96-Well Cell Transformation Assay Principle.

Anchorage-Independent Growth of HeLa Cells. HeLa cells were seeded at various concentrations and cultured for 6 days. HeLa cell transformation was determined according to the assay protocol.

Recent Product Citations
  1. Seo, H.G. et al. (2020). Mutual regulation between OGT and XIAP to control colon cancer cell growth and invasion. Cell Death Dis. 11(9):815. doi: 10.1038/s41419-020-02999-5.
  2. Chen, J. et al. (2020). Chrysin serves as a novel inhibitor of DGKα/FAK interaction to suppress the malignancy of esophageal squamous cell carcinoma (ESCC). Acta Pharm Sin B. doi: 10.1016/j.apsb.2020.07.011.
  3. Inoue, S. et al. (2020). Diffuse mesothelin expression leads to worse prognosis through enhanced cellular proliferation in colorectal cancer. Oncol Lett. 19:1741-1750. doi: 10.3892/ol.2020.11290.
  4. Kawai, S. et al. (2020). Three-dimensional culture models mimic colon cancer heterogeneity induced by different microenvironments. Sci Rep. 10(1):3156. doi: 10.1038/s41598-020-60145-9.
  5. Kisin, E. R. et al. (2020). Enhanced morphological transformation of human lung epithelial cells by continuous exposure to cellulose nanocrystals. Chemosphere. doi: 10.1016/j.chemosphere.2020.126170.
  6. Queckbörner, S. et al. (2020). Endometrial stromal cells exhibit a distinct phenotypic and immunomodulatory profile. Stem Cell Res Ther. 11(1):15. doi: 10.1186/s13287-019-1496-2.
  7. Song, S. et al. (2019). Cancer Stem Cells of Diffuse Large B Cell Lymphoma Are Not Enriched in the CD45+CD19- cells but in the ALDHhigh Cells. J. Cancer. doi: 10.7150/jca.35000.
  8. Yang, B. et al. (2019). Stopping transformed cancer cell growth by rigidity sensing. Nat Mater. doi: 10.1038/s41563-019-0507-0.
  9. Speth, J.M. et al. (2019). Alveolar macrophage secretion of vesicular SOCS3 represents a platform for lung cancer therapeutics. JCI Insight. 4(20). pii: 131340. doi: 10.1172/jci.insight.131340.
  10. Kim, D. et al. (2019). Anticancer effect of XAV939 is observed by inhibiting lactose dehydrogenase A in a 3‑dimensional culture of colorectal cancer cells. Oncology Letters. doi: 10.3892/ol.2019.10813.
  11. Copeland, B.T. et al. (2019). Factors that influence the androgen receptor cistrome in benign and malignant prostate cells. Mol Oncol. doi: 10.1002/1878-0261.12572.
  12. Oliveira-Mateos, C. et al. (2019). The transcribed pseudogene RPSAP52 enhances the oncofetal HMGA2-IGF2BP2-RAS axis through LIN28B-dependent and independent let-7 inhibition. Nat Commun. 10(1):3979. doi: 10.1038/s41467-019-11910-6.
  13. Fukuchi, H. et al. (2019). Forkhead box B2 inhibits the malignant characteristics of the pancreatic cancer cell line Panc-1 in vitro. Genes Cells. doi: 10.1111/gtc.12717.
  14. Salgia, M.M. et al. (2019). Different roles of peroxisome proliferator-activated receptor gamma isoforms in prostate cancer. Am J Clin Exp Urol. 7(3):98-109.   
  15. Sceberras, V. et al. (2019). Preclinical study for treatment of hypospadias by advanced therapy medicinal products. World J Urol. doi: 10.1007/s00345-019-02864-x.
  16. Eckerdt, F. et al. (2019). Potent Antineoplastic Effects of Combined PI3Kα-MNK Inhibition in Medulloblastoma. Mol Cancer Res. doi: 10.1158/1541-7786.MCR-18-1193.
  17. Zhao, H. et al. (2019). The Effect of Endothelial Cells on UVB-induced DNA Damage and Transformation of Keratinocytes In 3D Polycaprolactone Scaffold Co-culture System. Photochem Photobiol. 95(1):338-344. doi: 10.1111/php.13006.
  18. He, C. et al. (2019). YAP1-LATS2 feedback loop dictates senescent or malignant cell fate to maintain tissue homeostasis. EMBO Rep. 20(3). pii: e44948. doi: 10.15252/embr.201744948.
  19. Ito, E. et al. (2019). Tumorigenicity assay essential for facilitating safety studies of hiPSC-derived cardiomyocytes for clinical application. Sci Rep. 9(1):1881. doi: 10.1038/s41598-018-38325-5.
  20. Bunda, S. et al. (2019). CIC protein instability contributes to tumorigenesis in glioblastoma. Nat Commun. 10(1):661. doi: 10.1038/s41467-018-08087-9.
  21. Gökmen-Polar, Y. et al. (2019). Splicing factor ESRP1 controls ER-positive breast cancer by altering metabolic pathways. EMBO Rep. 20(2). pii: e46078. doi: 10.15252/embr.201846078.
  22. Koh, B. et al. (2019). Effect of fibroblast co-culture on the proliferation, viability and drug response of colon cancer cells. Oncol Lett. 17(2):2409-2417. doi: 10.3892/ol.2018.9836.
  23. O'Farrell, H. et al. (2019). Integrative Genomic Analyses Identifies GGA2 as a Cooperative Driver of EGFR-Mediated Lung Tumorigenesis. J Thorac Oncol. 14(4):656-671. doi: 10.1016/j.jtho.2018.12.004.
  24. Tong, L. et al. (2018). The Mechanisms of Carnosol in Chemoprevention of Ultraviolet B-Light-Induced Non-Melanoma Skin Cancer Formation. Sci Rep. 8(1):3574. doi: 10.1038/s41598-018-22029-x.
  25. Bell, J.B. et al. (2018). HDL nanoparticles targeting sonic hedgehog subtype medulloblastoma. Sci Rep. 8(1):1211. doi: 10.1038/s41598-017-18100-8.
  26. Zhao, C. et al. (2018). Quantitative proteomics using SILAC-MS identifies N-acetylcysteine-solution-triggered reversal response of renal cell carcinoma cell lines. J Cell Biochem. doi: 10.1002/jcb.28226.
  27. Jeon, Y.J. et al. (2018). miRNA-mediated TUSC3 deficiency enhances UPR and ERAD to promote metastatic potential of NSCLC. Nat Commun. 9(1):5110. doi: 10.1038/s41467-018-07561-8.
  28. Al-Anazi, M.R. et al. (2018). Deletion and Functional Analysis of Hepatitis B Virus X Protein: Evidence for an Effect on Cell Cycle Regulators. Cell Physiol Biochem. 49(5):1987-1998. doi: 10.1159/000493670.
  29. Rajangam, T. et al. (2018). Therapeutic effect of a xeno-free three-dimensional stem cell mass in a hind limb ischemia model. Tissue Eng Part A. doi: 10.1089/ten.TEA.2018.0089.
  30. Kim, Y.E. et al. (2018). Quantitative Proteomic Analysis of 2D and 3D Cultured Colorectal Cancer Cells: Profiling of Tankyrase Inhibitor XAV939-Induced Proteome. Sci Rep. 8(1):13255. doi: 10.1038/s41598-018-31564-6.