96-Well Cell Transformation Assays, Standard Soft Agar

96-Well Cell Transformation Assays, Standard Soft Agar
  • Uses traditional 3D soft agar matrix
  • Fully quantify cell transformation with no manual cell counting
  • Results in 7-8 days, not 3 weeks

 

Frequently Asked Questions about this product

General FAQs about Cell Transformation Assays

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

CytoSelect™ 96-Well Cell Transformation Assay, Soft Agar Colony Formation
Catalog Number
CBA-130
Size
96 assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$605.00
CytoSelect™ 96-Well Cell Transformation Assay, Soft Agar Colony Formation
Catalog Number
CBA-130-5
Size
5 x 96 assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$2,560.00
CytoSelect™ 96-Well Cell Transformation Assay, Soft Agar Colony Formation, Trial Size
Catalog Number
CBA-130-T
Size
24 assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$300.00
Product Details

Our CytoSelect™ 96-Well Cell Transformation Assay (Soft Agar Colony Formation) is suitable for measuring cell transformation where no downstream analysis is required. Cells are incubated in a semisolid agar medium for 7-8 days. The cells are then solubilized, lysed and detected using the included fluorescent dye in a fluorometric plate reader.

Cells incubated using this assay may not be recovered intact. For recovery of intact viable cells, consider our Soft Agar Assay with Cell Recovery.

CytoSelect™ 96-Well Cell Transformation Assay Principle.

Anchorage-Independent Growth of HeLa Cells. HeLa cells were seeded at various concentrations and cultured for 6 days. HeLa cell transformation was determined according to the assay protocol.

Recent Product Citations
  1. Tan, T.T. et al. (2021). Assessment of Tumorigenic Potential in Mesenchymal-Stem/Stromal-Cell-Derived Small Extracellular Vesicles (MSC-sEV). Pharmaceuticals. 14(4):345. doi: 10.3390/ph14040345.
  2. Lo, E.K.K. et al. (2021). Low dose of zearalenone elevated colon cancer cell growth through G protein-coupled estrogenic receptor. Sci Rep. 11(1):7403. doi: 10.1038/s41598-021-86788-w.
  3. Park, S. et al. (2021). Cerebral Cavernous Malformation 1 Determines YAP/TAZ Signaling-Dependent Metastatic Hallmarks of Prostate Cancer Cells. Cancers (Basel). 13(5):1125. doi: 10.3390/cancers13051125.
  4. Huang, S.B. et al. (2021). Androgen deprivation-induced elevated nuclear SIRT1 promotes prostate tumor cell survival by reactivation of AR signaling. Cancer Lett. doi: 10.1016/j.canlet.2021.02.008.
  5. Gao, C. et al. (2020). High intratumoral expression of eIF4A1 promotes epithelial-to-mesenchymal transition and predicts unfavorable prognosis in gastric cancer. Acta Biochim Biophys Sin (Shanghai). pii: gmz168. doi: 10.1093/abbs/gmz168.
  6. Eckerdt, F.D. et al. (2020). Combined PI3Kα-mTOR Targeting of Glioma Stem Cells. Sci Rep. 10(1):21873. doi: 10.1038/s41598-020-78788-z.
  7. Byun, H.J. et al. (2020). LUCAT1 Epigenetically Downregulates the Tumor Suppressor Genes CXXC4 and SFRP2 in Gastric Cancer. Yonsei Med J. 61(11):923-934. doi: 10.3349/ymj.2020.61.11.923.
  8. Seo, H.G. et al. (2020). Mutual regulation between OGT and XIAP to control colon cancer cell growth and invasion. Cell Death Dis. 11(9):815. doi: 10.1038/s41419-020-02999-5.
  9. Chen, J. et al. (2020). Chrysin serves as a novel inhibitor of DGKα/FAK interaction to suppress the malignancy of esophageal squamous cell carcinoma (ESCC). Acta Pharm Sin B. doi: 10.1016/j.apsb.2020.07.011.
  10. Inoue, S. et al. (2020). Diffuse mesothelin expression leads to worse prognosis through enhanced cellular proliferation in colorectal cancer. Oncol Lett. 19:1741-1750. doi: 10.3892/ol.2020.11290.
  11. Kawai, S. et al. (2020). Three-dimensional culture models mimic colon cancer heterogeneity induced by different microenvironments. Sci Rep. 10(1):3156. doi: 10.1038/s41598-020-60145-9.
  12. Kisin, E. R. et al. (2020). Enhanced morphological transformation of human lung epithelial cells by continuous exposure to cellulose nanocrystals. Chemosphere. doi: 10.1016/j.chemosphere.2020.126170.
  13. Queckbörner, S. et al. (2020). Endometrial stromal cells exhibit a distinct phenotypic and immunomodulatory profile. Stem Cell Res Ther. 11(1):15. doi: 10.1186/s13287-019-1496-2.
  14. Song, S. et al. (2019). Cancer Stem Cells of Diffuse Large B Cell Lymphoma Are Not Enriched in the CD45+CD19- cells but in the ALDHhigh Cells. J. Cancer. doi: 10.7150/jca.35000.
  15. Yang, B. et al. (2019). Stopping transformed cancer cell growth by rigidity sensing. Nat Mater. doi: 10.1038/s41563-019-0507-0.
  16. Speth, J.M. et al. (2019). Alveolar macrophage secretion of vesicular SOCS3 represents a platform for lung cancer therapeutics. JCI Insight. 4(20). pii: 131340. doi: 10.1172/jci.insight.131340.
  17. Kim, D. et al. (2019). Anticancer effect of XAV939 is observed by inhibiting lactose dehydrogenase A in a 3‑dimensional culture of colorectal cancer cells. Oncology Letters. doi: 10.3892/ol.2019.10813.
  18. Copeland, B.T. et al. (2019). Factors that influence the androgen receptor cistrome in benign and malignant prostate cells. Mol Oncol. doi: 10.1002/1878-0261.12572.
  19. Oliveira-Mateos, C. et al. (2019). The transcribed pseudogene RPSAP52 enhances the oncofetal HMGA2-IGF2BP2-RAS axis through LIN28B-dependent and independent let-7 inhibition. Nat Commun. 10(1):3979. doi: 10.1038/s41467-019-11910-6.
  20. Fukuchi, H. et al. (2019). Forkhead box B2 inhibits the malignant characteristics of the pancreatic cancer cell line Panc-1 in vitro. Genes Cells. doi: 10.1111/gtc.12717.
  21. Salgia, M.M. et al. (2019). Different roles of peroxisome proliferator-activated receptor gamma isoforms in prostate cancer. Am J Clin Exp Urol. 7(3):98-109.   
  22. Sceberras, V. et al. (2019). Preclinical study for treatment of hypospadias by advanced therapy medicinal products. World J Urol. doi: 10.1007/s00345-019-02864-x.
  23. Eckerdt, F. et al. (2019). Potent Antineoplastic Effects of Combined PI3Kα-MNK Inhibition in Medulloblastoma. Mol Cancer Res. doi: 10.1158/1541-7786.MCR-18-1193.
  24. Zhao, H. et al. (2019). The Effect of Endothelial Cells on UVB-induced DNA Damage and Transformation of Keratinocytes In 3D Polycaprolactone Scaffold Co-culture System. Photochem Photobiol. 95(1):338-344. doi: 10.1111/php.13006.
  25. He, C. et al. (2019). YAP1-LATS2 feedback loop dictates senescent or malignant cell fate to maintain tissue homeostasis. EMBO Rep. 20(3). pii: e44948. doi: 10.15252/embr.201744948.
  26. Ito, E. et al. (2019). Tumorigenicity assay essential for facilitating safety studies of hiPSC-derived cardiomyocytes for clinical application. Sci Rep. 9(1):1881. doi: 10.1038/s41598-018-38325-5.
  27. Bunda, S. et al. (2019). CIC protein instability contributes to tumorigenesis in glioblastoma. Nat Commun. 10(1):661. doi: 10.1038/s41467-018-08087-9.
  28. Gökmen-Polar, Y. et al. (2019). Splicing factor ESRP1 controls ER-positive breast cancer by altering metabolic pathways. EMBO Rep. 20(2). pii: e46078. doi: 10.15252/embr.201846078.
  29. Koh, B. et al. (2019). Effect of fibroblast co-culture on the proliferation, viability and drug response of colon cancer cells. Oncol Lett. 17(2):2409-2417. doi: 10.3892/ol.2018.9836.
  30. O'Farrell, H. et al. (2019). Integrative Genomic Analyses Identifies GGA2 as a Cooperative Driver of EGFR-Mediated Lung Tumorigenesis. J Thorac Oncol. 14(4):656-671. doi: 10.1016/j.jtho.2018.12.004.