96-Well Cell Transformation Assays, Standard Soft Agar

96-Well Cell Transformation Assays, Standard Soft Agar
  • Uses traditional 3D soft agar matrix
  • Fully quantify cell transformation with no manual cell counting
  • Results in 7-8 days, not 3 weeks

 

Frequently Asked Questions about this product

General FAQs about Cell Transformation Assays

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

CytoSelect™ 96-Well Cell Transformation Assay, Soft Agar Colony Formation
Catalog Number
CBA-130
Size
96 assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$665.00
CytoSelect™ 96-Well Cell Transformation Assay, Soft Agar Colony Formation
Catalog Number
CBA-130-5
Size
5 x 96 assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$2,850.00
Product Details

Our CytoSelect™ 96-Well Cell Transformation Assay (Soft Agar Colony Formation) is suitable for measuring cell transformation where no downstream analysis is required. Cells are incubated in a semisolid agar medium for 7-8 days. The cells are then solubilized, lysed and detected using the included fluorescent dye in a fluorometric plate reader.

Cells incubated using this assay may not be recovered intact. For recovery of intact viable cells, consider our Soft Agar Assay with Cell Recovery.

CytoSelect™ 96-Well Cell Transformation Assay Principle.

Anchorage-Independent Growth of HeLa Cells. HeLa cells were seeded at various concentrations and cultured for 6 days. HeLa cell transformation was determined according to the assay protocol.

Recent Product Citations
  1. Choi, B.Y. et al. (2023). Engineered Mesenchymal Stem Cells Over-Expressing BDNF Protect the Brain from Traumatic Brain Injury-Induced Neuronal Death, Neurological Deficits, and Cognitive Impairments. Pharmaceuticals (Basel). 16(3):436. doi: 10.3390/ph16030436.
  2. Ikeda, J. et al. (2023). Hypoxia inducible factor‐1 activator munc‐18‐interacting protein 3 promotes tumour progression in urothelial carcinoma. Clin Transl Disc. 3:e158. doi: 10.1002/ctd2.158.
  3. Switzer, C.H. et al. (2022). NOS2 and S-nitrosothiol signaling induces DNA hypomethylation and LINE-1 retrotransposon expression. Proc Natl Acad Sci U S A. 119(21):e2200022119. doi: 10.1073/pnas.2200022119.
  4. Furuya, K. et al. (2022). Machine learning extracts oncogenic-specific γ-H2AX foci formation pattern upon genotoxic stress. Genes Cells. doi: 10.1111/gtc.13005.
  5. Kim, M. et al. (2022). BRAFV600E Mutation Enhances Estrogen-Induced Metastatic Potential of Thyroid Cancer by Regulating the Expression of Estrogen Receptors. Endocrinol Metab (Seoul). 37(6):879-890. doi: 10.3803/EnM.2022.1563.
  6. Toh, P.J.Y. et al. (2022). Optogenetic control of YAP cellular localisation and function. EMBO Rep. doi: 10.15252/embr.202154401.
  7. Lee, A.R. et al. (2022). Biomarker LEPRE1 induces pelitinib-specific drug responsiveness by regulating ABCG2 expression and tumor transition states in human leukemia and lung cancer. Sci Rep. 12(1):2928. doi: 10.1038/s41598-022-06621-w.
  8. Wang, Y. et al. (2022). Long non-coding RNA OIP5-AS1 suppresses microRNA-92a to augment proliferation and metastasis of ovarian cancer cells through upregulating ITGA6. J Ovarian Res. 15(1):25. doi: 10.1186/s13048-021-00937-3.
  9. Andriolo, G. et al. (2021). GMP-Grade Methods for Cardiac Progenitor Cells: Cell Bank Production and Quality Control. Methods Mol Biol. doi: 10.1007/7651_2020_286.
  10. Tan, T.T. et al. (2021). Assessment of Tumorigenic Potential in Mesenchymal-Stem/Stromal-Cell-Derived Small Extracellular Vesicles (MSC-sEV). Pharmaceuticals. 14(4):345. doi: 10.3390/ph14040345.
  11. Lo, E.K.K. et al. (2021). Low dose of zearalenone elevated colon cancer cell growth through G protein-coupled estrogenic receptor. Sci Rep. 11(1):7403. doi: 10.1038/s41598-021-86788-w.
  12. Park, S. et al. (2021). Cerebral Cavernous Malformation 1 Determines YAP/TAZ Signaling-Dependent Metastatic Hallmarks of Prostate Cancer Cells. Cancers (Basel). 13(5):1125. doi: 10.3390/cancers13051125.
  13. Huang, S.B. et al. (2021). Androgen deprivation-induced elevated nuclear SIRT1 promotes prostate tumor cell survival by reactivation of AR signaling. Cancer Lett. doi: 10.1016/j.canlet.2021.02.008.
  14. Gao, C. et al. (2020). High intratumoral expression of eIF4A1 promotes epithelial-to-mesenchymal transition and predicts unfavorable prognosis in gastric cancer. Acta Biochim Biophys Sin (Shanghai). pii: gmz168. doi: 10.1093/abbs/gmz168.
  15. Eckerdt, F.D. et al. (2020). Combined PI3Kα-mTOR Targeting of Glioma Stem Cells. Sci Rep. 10(1):21873. doi: 10.1038/s41598-020-78788-z.
  16. Byun, H.J. et al. (2020). LUCAT1 Epigenetically Downregulates the Tumor Suppressor Genes CXXC4 and SFRP2 in Gastric Cancer. Yonsei Med J. 61(11):923-934. doi: 10.3349/ymj.2020.61.11.923.
  17. Seo, H.G. et al. (2020). Mutual regulation between OGT and XIAP to control colon cancer cell growth and invasion. Cell Death Dis. 11(9):815. doi: 10.1038/s41419-020-02999-5.
  18. Chen, J. et al. (2020). Chrysin serves as a novel inhibitor of DGKα/FAK interaction to suppress the malignancy of esophageal squamous cell carcinoma (ESCC). Acta Pharm Sin B. doi: 10.1016/j.apsb.2020.07.011.
  19. Inoue, S. et al. (2020). Diffuse mesothelin expression leads to worse prognosis through enhanced cellular proliferation in colorectal cancer. Oncol Lett. 19:1741-1750. doi: 10.3892/ol.2020.11290.
  20. Kawai, S. et al. (2020). Three-dimensional culture models mimic colon cancer heterogeneity induced by different microenvironments. Sci Rep. 10(1):3156. doi: 10.1038/s41598-020-60145-9.
  21. Kisin, E. R. et al. (2020). Enhanced morphological transformation of human lung epithelial cells by continuous exposure to cellulose nanocrystals. Chemosphere. doi: 10.1016/j.chemosphere.2020.126170.
  22. Queckbörner, S. et al. (2020). Endometrial stromal cells exhibit a distinct phenotypic and immunomodulatory profile. Stem Cell Res Ther. 11(1):15. doi: 10.1186/s13287-019-1496-2.
  23. Song, S. et al. (2019). Cancer Stem Cells of Diffuse Large B Cell Lymphoma Are Not Enriched in the CD45+CD19- cells but in the ALDHhigh Cells. J. Cancer. doi: 10.7150/jca.35000.
  24. Yang, B. et al. (2019). Stopping transformed cancer cell growth by rigidity sensing. Nat Mater. doi: 10.1038/s41563-019-0507-0.
  25. Speth, J.M. et al. (2019). Alveolar macrophage secretion of vesicular SOCS3 represents a platform for lung cancer therapeutics. JCI Insight. 4(20). pii: 131340. doi: 10.1172/jci.insight.131340.
  26. Kim, D. et al. (2019). Anticancer effect of XAV939 is observed by inhibiting lactose dehydrogenase A in a 3‑dimensional culture of colorectal cancer cells. Oncology Letters. doi: 10.3892/ol.2019.10813.
  27. Copeland, B.T. et al. (2019). Factors that influence the androgen receptor cistrome in benign and malignant prostate cells. Mol Oncol. doi: 10.1002/1878-0261.12572.
  28. Oliveira-Mateos, C. et al. (2019). The transcribed pseudogene RPSAP52 enhances the oncofetal HMGA2-IGF2BP2-RAS axis through LIN28B-dependent and independent let-7 inhibition. Nat Commun. 10(1):3979. doi: 10.1038/s41467-019-11910-6.
  29. Fukuchi, H. et al. (2019). Forkhead box B2 inhibits the malignant characteristics of the pancreatic cancer cell line Panc-1 in vitro. Genes Cells. doi: 10.1111/gtc.12717.
  30. Salgia, M.M. et al. (2019). Different roles of peroxisome proliferator-activated receptor gamma isoforms in prostate cancer. Am J Clin Exp Urol. 7(3):98-109.