96-Well Cell Transformation Assays, Standard Soft Agar

  • Uses traditional 3D soft agar matrix
  • Fully quantify cell transformation with no manual cell counting
  • Results in 7-8 days, not 3 weeks


Frequently Asked Questions about this product

General FAQs about Cell Transformation Assays

Email To BuyerPrint this PageCopy Link

Please contact your distributor for pricing.

CytoSelect™ 96-Well Cell Transformation Assay, Soft Agar Colony Formation
Catalog Number
96 assays
Manual/Data Sheet Download
SDS Download
CytoSelect™ 96-Well Cell Transformation Assay, Soft Agar Colony Formation
Catalog Number
5 x 96 assays
Manual/Data Sheet Download
SDS Download
CytoSelect™ 96-Well Cell Transformation Assay, Soft Agar Colony Formation, Trial Size
Catalog Number
24 assays
Manual/Data Sheet Download
SDS Download
Product Details

Our CytoSelect™ 96-Well Cell Transformation Assay (Soft Agar Colony Formation) is suitable for measuring cell transformation where no downstream analysis is required. Cells are incubated in a semisolid agar medium for 7-8 days. The cells are then solubilized, lysed and detected using the included fluorescent dye in a fluorometric plate reader.

Cells incubated using this assay may not be recovered intact. For recovery of intact viable cells, consider our Soft Agar Assay with Cell Recovery.

CytoSelect™ 96-Well Cell Transformation Assay Principle.

Anchorage-Independent Growth of HeLa Cells. HeLa cells were seeded at various concentrations and cultured for 6 days. HeLa cell transformation was determined according to the assay protocol.

Recent Product Citations
  1. Bell, J.B. et al. (2016). MNK inhibition disrupts mesenchymal glioma stem cells and prolongs survival in a mouse model of glioblastoma. Mol. Cancer Res. 14:984-993.
  2. Sheyn, D. et al. (2016). Human induced pluripotent stem cells differentiate into functional mesenchymal stem cells and repair bone defects. Stem Cells Trans. Med. 5:1447-1460.
  3. Lu, M. et al. (2016). The high expression of long non-coding RNA PANDAR indicates a poor prognosis for colorectal cancer and promotes metastasis by EMT pathway. J Cancer Res Clin Oncol. doi:10.1007/s00432-016-2252-y.
  4. Qu, Y. et al. (2016). Axitinib blocks Wnt/β-catenin signaling and directs asymmetric cell division in cancer. Proc Natl Acad Sci U S A. 113:9339-9344.
  5. Ciampi, R. et al. (2016). Classical point mutations of RET, BRAF and RAS oncogenes are not shared in papillary and medullary thyroid cancer occurring simultaneously in the same gland. J Endocrinol Invest. doi:10.1007/s40618-016-0526-5.
  6. Bai, D. et al. (2016). The ATPase hCINAP regulates 18S rRNA processing and is essential for embryogenesis and tumour growth. Nat Commun. doi:10.1038/ncomms12310.
  7. Hua, G. et al. (2016). The four and a half LIM domains 2 (FHL2) regulates ovarian granulosa cell tumor progression via controlling AKT1 transcription. Cell Death Dis. doi:10.1038/cddis.2016.207.
  8. Wolfenson, H. et al. (2016). Tropomyosin controls sarcomere-like contractions for rigidity sensing and suppressing growth on soft matrices. Nat Cell Biol. 18:33-42.
  9. Martinez-Cruzado, L. et al. (2016). Aldh1 expression and activity increase during tumor evolution in sarcoma cancer stem cell populations. Sci Rep. doi:10.1038/srep27878.
  10. Gong, J. et al. (2016). Downregulation of STAT3/NF-κB potentiates gemcitabine activity in pancreatic cancer cells. Mol Carcinog. doi:10.1002/mc.22503.
  11. Nakanishi, Y. et al. (2016). Activating mutations in PIK3CB confer resistance to PI3K inhibition and define a novel oncogenic role for p110β. Cancer Res. doi:10.1158/0008-5472.
  12. Tsukamoto, Y. et al. (2015). Expression of DDX27 contributes to colony-forming ability of gastric cancer cells and correlates with poor prognosis in gastric cancer. Am J Cancer Res. 5:2998.
  13. Bunda, S. et al. (2015). Inhibition of SHP2-mediated dephosphorylation of Ras suppresses oncogenesis. Nat Commun. doi:10.1038/ncomms9859.
  14. He, C. et al. (2015). The Hippo/YAP pathway interacts with EGFR signaling and HPV oncoproteins to regulate cervical cancer progression. EMBO Mol Med. 7:1426-1449.
  15. Ercan, D. et al. (2015). EGFR mutations and resistance to irreversible pyrimidine based EGFR inhibitors. Clin Cancer Res. 21:3913-3923.
  16. Mayr, C. et al. (2015). 3-Deazaneplanocin A may directly target putative cancer stem cells in biliary tract cancer. Anticancer Res. 35:4697-4705.
  17. He, C. et al. (2015). The Hippo/YAP pathway interacts with EGFR signaling and HPV oncoproteins to regulate cervical cancer progression. EMBO Mol Med.  doi:10.15252/emmm.201404976.
  18. Hua, G. et al. (2015). YAP induces high-grade serous carcinoma in fallopian tube secretory epithelial cells. Oncogene. doi:10.1038/onc.2015.288.
  19. Ukaji, T. et al. (2015). Inhibition of IGF-1-mediated cellular migration and invasion by migracin A in ovarian clear cell carcinoma cells. PLoS One. 10:e0137663.
  20. Fujita, T. et al. (2015). Identification and characterization of CXCR4-positive gastric cancer stem cells. PLoS One. 10:e0130808.
  21. Yonesaka, K. et al. (2015). Anti-HER3 monoclonal antibody patritumab sensitizes refractory non-small cell lung cancer to the epidermal growth factor receptor inhibitor erlotinib. Oncogene.  doi: 10.1038/onc.2015.142.
  22. Mayr, C. et al. (2015). Cytotoxic effects of chemokine receptor 4 inhibition by AMD3100 in biliary tract cancer cells: Potential drug synergism with gemcitabine. Mol Med Rep. doi: 10.3892/mmr.2015.3589.
  23. He, C. et al. (2015). YAP forms autocrine loops with the ERBB pathway to regulate ovarian cancer initiation and progression. Oncogene.  doi: 10.1038/onc.2015.52.
  24. Kim, T. et al. (2015). Role of MYC-regulated long noncoding RNAs in cell cycle regulation and tumorigenesis. J Natl Cancer Inst. 107:dju505.
  25. Galvan, A. et al. (2015). Germline polymorphisms and survival of lung adenocarcinoma patients: a genome-wide study in two European patient series. Int J Cancer. 136:E262-E271.
  26. Nakanishi, Y. et al. (2015). Mechanism of oncogenic signal activation by the novel fusion kinase FGFR3-BAIAP2L1. Mol Cancer Ther. doi: 10.1158/1535-7163.MCT-14-0927-T.
  27. Bon, H. et al. (2015). Salt-inducible Kinase 2 regulates mitotic progression and transcription in prostate cancer. Mol Cancer Res. 13:620-635.
  28. Westbom, C. M. et al. (2014). CREB-induced inflammation is important for malignant mesothelioma growth. Am J Pathol. 184:2816-2827.
  29. Kong, L. Y. et al. (2014). Therapeutic targets in subependymoma. J Neuroimmunol. 277:168-175.
  30. Takiguchi, S. et al. (2014). Involvement of CXCL14 in osteolytic bone metastasis from lung cancer. Int J Oncol. 44:1316-1324.
  31. Wang, L. et al. (2014). Ectopic over-expression of miR-429 induces mesenchymal-to-epithelial transition (MET) and increased drug sensitivity in metastasizing ovarian cancer cells. Gynecol Oncol. 134:96-103.
  32. Sun, Y. et al. (2014). Cholesterol-induced activation of TRPM7 regulates cell proliferation, migration, and viability of human prostate cells. Biochim Biophys Acta. 1843:1839-1850.
  33. Priya, S. et al. (2014). Diethyl maleate inhibits MCA+ TPA transformed cell growth via modulation of GSH, MAPK, and cancer pathways. Chem Biol Interact. 219:37-47.
  34. Nakamura, T. et al. (2014). Osteopontin-integrin αvβ3 axis is crucial for 5-fluorouracil resistance in oral squamous cell carcinoma. FEBS Lett. 589:231-239.
  35. He, X., et al. (2014). Involvement of polypyrimidine tract-binding protein (PTBP1) in maintaining breast cancer cell growth and malignant properties. Oncogenesis. 3:e84.
  36. Eckerdt, F. et al. (2014). Regulatory effects of a Mnk2-eIF4E feedback loop during mTORC1 targeting of human medulloblastoma cells. Oncotarget. 5:8442-8451.
  37. Lin, L. et al. (2014).  A Large-Scale RNAi-Based Mouse Tumorigenesis Screen Identifies New Lung Cancer Tumor Suppressors That Repress FGFR Signaling. Cancer Discov. 4:1168-1181.
  38. Zecchini, V. et al. (2014).  Nuclear ARRB1 induces pseudohypoxia and cellular metabolism reprogramming in prostate cancer. EMBO J. 33:1365-1382.
  39. Eisfeld, A.K. et al. (2014). NRAS isoforms differentially affect downstream pathways, cell growth, and cell transformation. PNAS 111:4179-4184.
  40. Gong, J. et al. (2014). Combined targeting of STAT3/NF-kB/COX-2/EP4 for effective management of pancreatic cancer. Clin. Cancer Res. 20:1259-1273.
  41. Kegelman, T. et al. (2013). MDA-9/Syntenin is a Key Regulator of Glioma Pathogenesis. Neuro Oncology. 16:50-61.
  42. Giacoia, E.G. et al. Targeting Plasminogen Activator Inhibitor-1 Inhibits Angiogenesis and Tumor Growth in a Human Cancer Xenograft Model. Mol. Cancer Ther. 12:2697-2708.
  43. Hatano, K. et al. (2013). Residual Prostate Cancer Cells after Docetaxel Therapy Increase the Tumorigenic Potential via Constitutive Signaling of CXCR4, ERK1/2 and c-Myc. Mol. Cancer Res. 11:1088-1100.
  44. Gupta, P. et al. (2013).Oncrasin Targets the JNK-NF-B Axis to Sensitize Glioma Cells to TNFα-Induced Apoptosis. Carcinogenesis 34:388-396.
  45. Xing, C. et al. (2013). Reversing Effect of Ring Finger Protein 43 Inhibition on Malignant Phenotypes of Human Hepatocellular Carcinoma. Mol. Cancer Ther12:94-103 (#CBA-070).
  46. Rai, V. et al. (2012). Lysophosphatidic Acid Targets Vascular and Oncogenic Pathways via RAGE Signaling. J. Exp. Med. 209: 2339-2350.
  47. Ghantous, A. et al. (2012). Inhibition of Tumor Promotion by Parthenolide: Epigenetic Modulation of p21. Cancer Prevention Research 5: 1298-1309.
  48. Dennis, M. et al. (2012). Snail Controls the Mesenchymal Phenotype and Drives Erlotinib Resistance in Oral Epithelial and Head and Neck Squamous Cell Carcinoma Cells. Otolaryngology--Head and Neck Surgery 147: 726-732.
  49. Tan, X. et al. (2012). cAMP Response Element-Binding Protein Promotes Gliomagenesis by Modulating the Expression of Oncogenic MicroRNA-23a. PNAS. 109: 15805-15810.
  50. Maccario, C. et al. (2012).The Resveratrol Analog 4,4'-Dihydroxy-Trans-Stilbene Suppresses Transformation in Normal Mouse Fibroblasts and Inhibits Proliferation and Invasion of Human Breast Cancer Cells. Carcinogenesis 10.1093/carcin/bgs244.
  51. Inami, Y. et al. (2011). Persistent Activation of Nrf2 through p62 in Hepatocellular Carcinoma Cells. J. Cell Biol. 10.1083/jcb.201102031.
  52. Maag, D. et al. (2011). Inositol Polyphosphate Multikinase is a Physiologic PI3-Kinase that Activates Akt/PKB. PNAS 108:1391-1396.
  53. Faoro, L. et al. (2010). EphA2 Mutation in Lung Squamous Cell Carcinoma Promotes Increased Cell Survival, Cell Invasion, Focal Adhesions, and Mammalian Target of Rapamycin Activation. J. Biol. Chem. 285:18575-18585. 
  54. Carnahan, J. (2010). Selective and Potent Raf Inhibitors Paradoxically Stimulate Normal Cell Proliferation and Tumor Growth. Mol. Cancer Ther. 9:2399-2410.
  55. Liu, F. et al. (2010). Epigenomic alterations and gene expression profiles in respiratory epithelia exposed to cigarette smoke condensate. Oncogene 29:3650-3664.
  56. Iorns, E. et al. (2010). The Role of SATB1 in Breast Cancer Pathogenesis. J. Natl. Cancer Inst. 10.1093/jnci/djq243.
  57. Rubio, R. et al. (2010). Deficiency in p53 but not retinoblastoma induces the transformation of mesynchymal stem cells in vitro and initiates leiomyosarcoma in vivo. Cancer Res. 70:4185-4194.
  58. Takezawa, K. et al. (2009). Sorafenib inhibits non-small cell lung cancer cell growth by targeting B-RAF in KRAS wild-type cells and C-RAF in KRAS mutant cells. Cancer Res. 69:6515-6521.
  59. Li, H. et al. (2009). Lysophosphatidic acid stimulates cell migration, invasion, and colony formation as well as tumorigenesis/metastasis of mouse ovarian cancer in immunocompetent mice. Mol. Cancer Ther. 8:1692-1701.
  60. Kang, M-I. et al. (2009). A selective small-molecule nuclear factor-kB inhibitor from a high-throughput cell-based assay for "activator protein-1 hits". Mol. Cancer Ther. 8:571-581.
  61. Lee, K.B. et al. (2008). Low energy proton beam induces tumor cell apoptosis through reactive oxygen species and activation of caspases. Exp. and Mol. Medicine 40(1):118-129.
  62. Shen, L. et al. (2008). E1A inhibits the proliferation of human cervical cancer cells (HeLa cells) by apoptosis induction through activation of HER-2/Neu/Caspase-3 pathway. Med. Oncol. 25:222-228.
  63. Wei, Q. et al. (2008). Sulfiredoxin is an AP-1 target gene that is required for transformation and shows elevated expression in human skin malignancies. PNAS 105:19738-19743.
  64. Gazin, C. et al. (2007). An elaborate pathway required for Ras-mediated epigenetic silencing. Nature449  (7165):1073-1077