Adenovirus Functional Titer Immunoassay Kit

Adenovirus Quantitation / Titer
  • More accurate adenoviral titer than traditional plaque-forming unit assays
  • Faster results: 2.5 days vs. 10 days
  • No agar overlay steps
Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

QuickTiter™ Adenovirus Titer Immunoassay Kit
Catalog Number
VPK-109
Size
100 assays
Detection
Immunocytochemistry
Manual/Data Sheet Download
SDS Download
Price
$655.00
Product Details

Accurate measurement of adenovirus titer is critical for gene delivery. Traditional plaque-forming unit (PFU) assays are long and suffer from high inter-assay variability.

The QuickTiter™ Adenovirus Titer Immunoassay Kit provide a quick, complete system to functionally titer virus infectivity. The assay recognizes all 41 serotypes of adenovirus, and can be used with any adenovirus system that can amplify in HEK 293 cells.

ICC Staining with the QuickTiter™ Adenovirus Titer Immunoassay Kit. HEK 293AD cells (#AD-100) were infected with different dilutions of purified Ad-ß-Galactosidease (#ADV-002) for 48 hours. Immunostaining was performed according to the assay protocol. X-gal staining was performed with the ß-Galactosidase Staining Kit (#AKR-100).

Recent Product Citations
  1. Kim, S. et al. (2025). Optogenetic mitochondrial preconditioning enhances cardiomyocyte survival under stress. J Mol Cell Cardiol. 205:24-36. doi: 10.1016/j.yjmcc.2025.06.004.
  2. Bissett, C. et al. (2024). Systemic prime mucosal boost significantly increases protective efficacy of bivalent RSV influenza viral vectored vaccine. NPJ Vaccines. 9(1):118. doi: 10.1038/s41541-024-00912-1.
  3. Xing, M. et al. (2024). An intranasal combination vaccine induces systemic and mucosal immunity against COVID-19 and influenza. NPJ Vaccines. 9(1):64. doi: 10.1038/s41541-024-00857-5.
  4. He, X. et al. (2023). Potent antitumor efficacy of human dental pulp stem cells armed with YSCH-01 oncolytic adenovirus. J Transl Med. 21(1):688. doi: 10.1186/s12967-023-04539-z.
  5. Zheng, H. et al. (2023). Combination IFNβ and Membrane-Stable CD40L Maximize Tumor Dendritic Cell Activation and Lymph Node Trafficking to Elicit Systemic T-cell Immunity. Cancer Immunol Res. 11(4):466-485. doi: 10.1158/2326-6066.CIR-22-0927.
  6. Hickey, J.M. et al. (2022). Measurement of Adenovirus-Based Vector Heterogeneity. J Pharm Sci. doi: 10.1016/j.xphs.2022.12.012.
  7. Sonugür, F.G. et al. (2022). Incubation Temperature and Period During Denarase Treatment and Microfiltration Affect the Yield of Recombinant Adenoviral Vectors During Downstream Processing. Mol Biotechnol. doi: 10.1007/s12033-022-00616-8.
  8. Nie, J. et al. (2022). Optimization of an adenovirus-vectored zoster vaccine production process with chemically defined medium and a perfusion system. Biotechnol Lett. doi: 10.1007/s10529-022-03302-6.
  9. Padron-Regalado, E. et al. (2022). STING-pathway modulation to enhance the immunogenicity of adenoviral-vectored vaccines. Sci Rep. 12(1):14464. doi: 10.1038/s41598-022-18750-3.
  10. Sun, Y. et al. (2022). Development of a perfusion process for serum-free adenovirus vector herpes zoster vaccine production. AMB Express. 12(1):58. doi: 10.1186/s13568-022-01398-7.
  11. Lu, M. et al. (2022). Oncolytic Adenovirus with SPAG9 shRNA Driven by DD3 Promoter Improved the Efficacy of Docetaxil for Prostate Cancer. J Oncol. doi: 10.1155/2022/7918067.
  12. Spencer, A.J. et al. (2022). The ChAdOx1 vectored vaccine, AZD2816, induces strong immunogenicity against SARS-CoV-2 beta (B.1.351) and other variants of concern in preclinical studies. EBioMedicine. 77:103902. doi: 10.1016/j.ebiom.2022.103902.
  13. Nie, J. et al. (2022). The efficient development of a novel recombinant adenovirus zoster vaccine perfusion production process. Vaccine. doi: 10.1016/j.vaccine.2022.02.024.
  14. Jang, Y. & Bunz, F. (2022). AdenoBuilder: A platform for the modular assembly of recombinant adenoviruses. STAR Protoc. 3(1):101123. doi: 10.1016/j.xpro.2022.101123.
  15. Yang, H.S. et al. (2022). Respiratory Safety Evaluation in Mice and Inhibition of Adenoviral Amplification in Human Bronchial Endothelial Cells Using a Novel Type of Chlorine Dioxide Gas Reactor. Toxics. 10(1):38. doi: 10.3390/toxics10010038.
  16. McQuerry, J.A. et al. (2021). Tepoxalin increases chemotherapy efficacy in drug-resistant breast cancer cells overexpressing the multidrug transporter gene ABCB1. Transl Oncol. 14(10):101181. doi: 10.1016/j.tranon.2021.101181.
  17. Tournier, B.B. et al. (2021). Amyloid and Tau Induce Cell Death Independently of TSPO Polymerization and Density Changes. ACS Omega. doi: 10.1021/acsomega.1c01678.
  18. Oliveira, E.R.A. et al (2021). Intracellular Sequestration of the NKG2D Ligand MIC B by Species F Adenovirus. Viruses. 13(7):1289. doi: 10.3390/v13071289.
  19. Tian, D. et al. (2020). Construction and efficacy evaluation of novel swine leukocyte antigen (SLA) class I and class II allele-specific poly-T cell epitope vaccines against porcine reproductive and respiratory syndrome virus. J Gen Virol. doi: 10.1099/jgv.0.001492.
  20. Borrás, T. et al. (2020). Generation of a Matrix Gla (Mgp) floxed mouse, followed by conditional knockout, uncovers a new Mgp function in the eye. Sci Rep. 10(1):18583. doi: 10.1038/s41598-020-75031-7.
  21. Wei, W.Z. et al. (2020). Diversity Outbred Mice Reveal the Quantitative Trait Locus and Regulatory Cells of HER2 Immunity. J Immunol. doi: 10.4049/jimmunol.2000466.
  22. Robles-Rodríguez, O.A. et al. (2020). Antitumor effect of adenoviruses expressing mutant nononcogenic E7 versions from HPV-16 fused to calreticulin. JBUON. 25(1): 543-548.
  23. Rollier, C.S. et al. (2020). Modification of Adenovirus vaccine vector-induced immune responses by expression of a signalling molecule. Sci Rep. 10(1):5716. doi: 10.1038/s41598-020-61730-8.
  24. Lokhandwala, S. et al. (2019). Adenovirus-vectored African Swine Fever Virus antigen cocktails are immunogenic but not protective against intranasal challenge with Georgia 2007/1 isolate. Veterinary Microbiology. 235:10-20. doi:10.1016/j.vetmic.2019.06.006.
  25. Sang, Y. et al. (2019). Ileal transcriptome analysis in obese rats induced by high-fat diets and an adenoviral infection. Int J Obes (Lond). doi: 10.1038/s41366-019-0323-2.
  26. Hao, J. et al. (2018). Prostate Cancer-Specific of DD3-driven Oncolytic Virus-harboring mK5 Gene. Open Med (Wars). 14: 1-9. doi: 10.1515/med-2019-0001.
  27. Mao, L.J. et al. (2018). Oncolytic Adenovirus Harboring Interleukin-24 Improves Chemotherapy for Advanced Prostate Cancer. J Cancer. 9(23):4391-4397. doi: 10.7150/jca.26437.
  28. Konishi, K. et al. (2018). In vitro approach to elucidate the relevance of carboxylesterase 2 and N-acetyltransferase 2 to flupirtine-induced liver injury. Biochem Pharmacol. 155:242-251. doi: 10.1016/j.bcp.2018.07.019.
  29. Que, W. et al. (2018). NK4 inhibits the proliferation and induces apoptosis of human rheumatoid arthritis synovial cells. Cell Biochem Funct. 36(5):273-279. doi: 10.1002/cbf.3339.
  30. Alharbi, N.K. et al. (2017). ChAdOx1 and MVA based vaccine candidates against MERS-CoV elicit neutralising antibodies and cellular immune responses in mice. Vaccine. 35(30):3780-3788.