Total Bile Acid Assays

Total Bile Acid Assay Kit
  • Measures total bile acid content as low as 1 µM (colorimetric) or 0.4 µM (fluorometric)
  • Suitable for plasma, serum, and cell or tissue lysates
  • Available with colorimetric or fluorometric detection
Email To BuyerPrint this PageCopy Link

Please contact your distributor for pricing.

Total Bile Acid Assay Kit (Colorimetric)
Catalog Number
100 assays
Manual/Data Sheet Download
SDS Download
Total Bile Acid Assay Kit (Fluorometric)
Catalog Number
100 assays
Manual/Data Sheet Download
SDS Download
Product Details

While bile acid synthesis is critical for the removal of cholesterol from the body, bile acids are also required for proper uptake of nutrients in the small intestine. Our Total Bile Acid Assay Kit provides a convenient 96-well plate-based method to measure the total bile acid content in a variety of sample types.

These assays are based on an enzyme driven reaction in which bile acids are incubated in the presence of 3-alpha hydroxysteroiddehydrogenase. The reaction used with the colorimetric kit requires the presence of NADH, and thio-NAD+. The thio-NAD+ is reduced to thio-NADH which is detected by colorimetric absorbance. The fluorometric kit requires incubation with NAD+, which is converted to NADH. Diaphorase then uses NADH to reduce resazurin to resorufin, which is detected fluormetrically at 560nm excitation and 590nm emission.

Recent Product Citations
  1. Ceglia, S. et al. (2023). An epithelial cell-derived metabolite tunes immunoglobulin A secretion by gut-resident plasma cells. Nat Immunol. 24(3):531-544. doi: 10.1038/s41590-022-01413-w (#STA-631).
  2. Gwon, K. et al. (2023). Function of hepatocyte spheroids in bioactive microcapsules is enhanced by endogenous and exogenous hepatocyte growth factor. Bioact Mater. 28:183-195. doi: 10.1016/j.bioactmat.2023.05.009 (#MET-5005).
  3. Moreau, F. et al. (2023). Liver-specific FGFR4 knockdown in mice on an HFD increases bile acid synthesis and improves hepatic steatosis. J Lipid Res. 64(2):100324. doi: 10.1016/j.jlr.2022.100324 (#STA-631).
  4. Mysore, K.R. et al. (2023). Innate immune cell dysfunction and systemic inflammation in children with chronic liver diseases undergoing transplantation. Am J Transplant. 23(1):26-36. doi: 10.1016/j.ajt.2022.09.004 (#STA-631).
  5. Bhat, N. et al. (2022). TCF7L2 transcriptionally regulates Fgf15 to maintain bile acid and lipid homeostasis through gut-liver crosstalk. FASEB J. 36(3):e22185. doi: 10.1096/fj.202101607R (#STA-631).
  6. Alrehaili, B.D. et al. (2022). Bile acid conjugation deficiency causes hypercholanemia, hyperphagia, islet dysfunction, and gut dysbiosis in mice. Hepatol Commun. doi: 10.1002/hep4.2041 (#STA-631).
  7. Blutt, S.E. et al. (2021). Use of Human Tissue Stem Cell-Derived Organoid Cultures to Model Enterohepatic Circulation. Am J Physiol Gastrointest Liver Physiol. doi: 10.1152/ajpgi.00177.2021 (#STA-631).
  8. Reis, L.G. et al. (2021). The Effects of Fermentation of Low or High Tannin Fava Bean-Based Diets on Glucose Response, Cardiovascular Function, and Fecal Bile Acid Excretion during a 28-Day Feeding Period in Dogs: Comparison with Commercial Diets with Normal vs. High Protein. Metabolites. 11(12):878. doi: 10.3390/metabo11120878 (#STA-631).
  9. Song, Y. et al. (2021). MiR-200c-3p targets SESN1 and represses the IL-6/AKT loop to prevent cholangiocyte activation and cholestatic liver fibrosis. Lab Invest. doi: 10.1038/s41374-021-00710-6 (#STA-631).
  10. Lee, S. W. et al. (2021). Vitamin C deficiency inhibits non-alcoholic fatty liver disease progression through impaired de novo lipogenesis. Am J Pathol. doi: 10.1016/j.ajpath.2021.05.020 (#STA-631).
  11. Liu, Y. et al. (2021). Dysregulated oxalate metabolism is a driver and therapeutic target in atherosclerosis. Cell Rep. 36(4):109420. doi: 10.1016/j.celrep.2021.109420 (#STA-631).
  12. Rizki-Safitri, A. et al. (2021). Prospect of in vitro Bile Fluids Collection in Improving Cell-Based Assay of Liver Function. Front. Toxicol. doi: 10.3389/ftox.2021.657432 (#STA-631).
  13. Morton, R.E. et al. (2021). The lipid substrate preference of CETP controls the biochemical properties of HDL in fat/cholesterol-fed hamsters. J Lipid Res. doi: 10.1016/j.jlr.2021.100027 (#STA-631).
  14. Velazquez, J.J. et al. (2020). Gene Regulatory Network Analysis and Engineering Directs Development and Vascularization of Multilineage Human Liver Organoids. Cell Syst. doi: 10.1016/j.cels.2020.11.002 (#STA-631).
  15. Steinhauser, C.B. et al. (2020). Lipid metabolism is altered in maternal, placental, and fetal tissues of ewes with small for gestational age fetuses. Biol Reprod. doi: 10.1093/biolre/ioaa180 (#STA-631).
  16. Chandra, A. et al. (2020). Inhibition of microRNA-128-3p attenuates hypercholesterolemia in mouse model. Life Sci. doi: 10.1016/j.lfs.2020.118633 (#STA-631).
  17. Deng, Q. et al. (2020). Dietary Lactic Acid Bacteria Modulate Yolk Components and Cholesterol Metabolism by Hmgr Pathway in Laying Hens. Braz. J. Poult. 22(3):eRBCA-2020-1261. doi: 10.1590/1806-9061-2020-1261 (#MET-5005).
  18. Wadie, W. et al. (2020). Protective impact of lycopene on ethinylestradiol-induced cholestasis in rats. Naunyn Schmiedebergs Arch Pharmacol. doi: 10.1007/s00210-020-01980-5 (#MET-5005).
  19. Choi, J.H. et al. (2020). Microfluidic confinement enhances phenotype and function of hepatocyte spheroids. Am J Physiol Cell Physiol. doi: 10.1152/ajpcell.00094.2020 (#MET-5005).
  20. Chen, P.B. et al. (2020). Directed remodeling of the mouse gut microbiome inhibits the development of atherosclerosis. Nat Biotechnol. doi: 10.1038/s41587-020-0549-5 (#MET-5005).
  21. Kennedy, L. et al. (2020). Biliary damage and liver fibrosis are ameliorated in a novel mouse model lacking l-histidine decarboxylase/histamine signaling. Lab Invest. doi: 10.1038/s41374-020-0405-8 (#STA-631).
  22. Feng, X. et al. (2020). Depletion of hepatic forkhead box O1 does not affect cholelithiasis in male and female mice. J Biol Chem. pii: jbc.RA119.012272. doi: 10.1074/jbc.RA119.012272 (#STA-631).
  23. Dao Thi, V.L. et al. (2020). Stem cell-derived polarized hepatocytes. Nat Commun. 11(1):1677. doi: 10.1038/s41467-020-15337-2 (#STA-631).
  24. Kumazaki, S. et al. (2019). Bile Acid Metabolism is an Intermediary Factor between Non-Alcoholic Steatohepatitis and Ischemic Heart Disease in SHRSP5/Dmcr Rats. J Nutri Food Sci. 9:763. doi: 10.35248/2155-9600.19.9.763 (#STA-631).
  25. Dächert, C. et al. (2019). Gene Expression Profiling of Different Huh7 Variants Reveals Novel Hepatitis C Virus Host Factors. Viruses. 12(1). pii: E36. doi: 10.3390/v12010036 (#STA-631).
  26. Siemienowicz, K.J. et al. (2019). Fetal androgen exposure is a determinant of adult male metabolic health. Sci Rep. 9(1):20195. doi: 10.1038/s41598-019-56790-4 (#STA-631).
  27. Torres, S.E. et al. (2019). Ceapins block the unfolded protein response sensor ATF6α by inducing a neomorphic inter-organelle tether. Elife. doi: 10.7554/eLife.46595 (#STA-631).
  28. Kumar, R. et al. (2019). Bile acid and bile acid transporters are involved in the pathogenesis of acute hepatopancreatic necrosis disease in white shrimp Litopenaeus vannamei. Cell Microbiol. doi: 10.1111/cmi.13127 (#STA-631).
  29. Lin, T. et al. (2019). Manipulation of the dry bean (Phaseolus vulgaris L.) matrix by hydrothermal and high-pressure treatments: Impact on in vitro bile salt-binding ability. Food Chemistry. doi: 10.1016/j.foodchem.2019.125699 (#MET-5005).
  30. Meixiong, J. et al. (2019). MRGPRX4 is a G protein-coupled receptor activated by bile acids that may contribute to cholestatic pruritus. Proc Natl Acad Sci U S A. pii: 201903316. doi: 10.1073/pnas.1903316116 (#MET-5005).