Cell Contraction Assays, Two-Step Attached Model

  • Uses a 3D collagen matrix to measure changes in the collagen gel size
  • Assess cell contractivity and screen for cell contraction mediators
  • Includes optional cell contraction inhibitor
Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

Cell Contraction Assay
Catalog Number
CBA-201
Size
24 assays
Detection
Light Microscopy
Manual/Data Sheet Download
SDS Download
Price
$375.00
Product Details

The two-step attached model combines an initial period of attached matrix contraction leading to mechanical loading, followed by release of the matrices, resulting in mechanical unloading and further contraction as mechanical stress dissipates. Cell Biolabs’ Collagen-based Contraction Assay Kit provides a simple system to assess cell contractivity in vitro and screen cell contraction mediators.

Recent Product Citations
  1. Wolfson, B. et al. (2016). High-fat diet promotes mammary gland myofibroblast differentiation through miR-140 downregulation. Mol. Cell Biol. doi:10.1128/mcb.00461-16.
  2. Zhou, M.W. et al. (2016). Inhibition of collagen synthesis by IWR-1 in normal and keloid-derived skin fibroblasts. Life Sci. doi:10.1016/j.lfs.2016.12.003.
  3. Duru, N. et al. (2016). Loss of miR-140 is a key risk factor for radiation-induced lung fibrosis through reprogramming fibroblasts and macrophages. Sci. Rep. 6:39572.
  4. Loomans, H.A. Esophageal squamous cell carcinoma invasion is inhibited by Activin A in ACVRIB-positive cells. BMC Cancer 16:873.
  5. Woeller, C.F. et al. (2016). The aryl hydrocarbon receptor and its ligands inhibit myofibroblast formation and activation: implications for thyroid eye disease. Am. J. Pathol. 186:3189-3202.
  6. Greene, W. A. et al. (2016). Secretion profile of induced pluripotent stem cell-derived retinal pigment epithelium during wound healingstem cell-derived RPE profile during wound healing. Invest Ophthalmol Vis Sci. 57:4428-4441.
  7. Por, E. D. et al. (2016). Trichostatin A inhibits retinal pigmented epithelium activation in an in vitro model of proliferative vitreoretinopathyJ Ocul Pharmacol Ther.  doi:10.1089/jop.2016.0038.
  8. Jiao, J. et al. (2016). Differentiation defect in neural crest-derived smooth muscle cells in patients with aortopathy associated with bicuspid aortic valves. EBioMedicine. doi:10.1016/j.ebiom.2016.06.045.
  9. Chen, P.Y. et al. (2016). Smooth muscle FGF/TGFβ cross talk regulates atherosclerosis progression. EMBO Mol Med. doi:10.15252/emmm.201506181.
  10. Lazar-Karsten, P. et al. (2016). Generation and characterization of vascular smooth muscle cell lines derived from a patient with a bicuspid aortic valve. Cells doi:10.3390/cells5020019.
  11. Ye, Y. et al. (2016). Down-regulation of 14-3-3 Zeta inhibits TGF-β1–induced actomyosin contraction in human trabecular meshwork cells through rhoa signaling pathway14-3-3 zeta regulates actomyosin contraction in TM cells. Invest Ophthalmol Vis Sci. 57:71
  12. Rinella, L. et al. (2016). Extracorporeal shockwaves modulate myofibroblast differentiation of adipose-derived stem cells. Wound Repair Regen. doi:10.1111/wrr.12410.
  13. Halim, D. et al. (2015). ACTG2 variants impair actin polymerization in sporadic Megacystis Microcolon Intestinal Hypoperistalsis Syndrome. Hum Mol Genet. doi:10.1093/hmg/ddv497.
  14. Li, H. Y. et al. (2015). Activation of TGF-β1-CD147 positive feedback loop in hepatic stellate cells promotes liver fibrosis. Sci Rep. 5:16552.
  15. Ham, S. A. et al. (2015). Ligand-activated PPARδ upregulates α-smooth muscle actin expression in human dermal fibroblasts: a potential role for PPARδ in wound healing. J Dermatol Scidoi:10.1016/j.jdermsci.2015.10.005
  16. Duru, N. et al. (2015). NRF2/miR-140 signaling confers radioprotection to human lung fibroblasts. Cancer Lett.  doi:10.1016/j.canlet.2015.08.011.
  17. Gutiérrez, J. et al. (2015). RECK-mediated β1-integrin regulation by TGF-β1 is critical for wound contraction in mice. PLoS One 10:e0135005.
  18. Ratuszny, D. et al. (2015). miR-145 is a promising therapeutic target to prevent cornea scarring. Hum Gene Ther. doi:10.1089/hum.2014.151.
  19. Sobel, K. et al. (2015). FTY720-P activates sphingosine-1-phosphate receptor 2 and selectively couples to Gα12/13/Rho/ROCK to induce myofibroblast contraction. Mol Pharmacoldoi:10.1124/mol.114.097261.
  20. Woeller, C. F. et al. (2015). Salinomycin and other polyether ionophores are a new class of antiscarring agent. J Biol Chem. 290:3563-3575.
  21. Luo, Y. et al. (2015). Magnitude-dependent proliferation and contractility modulation of human bladder smooth muscle cells under physiological stretch. World J Urol. doi:10.1007/s00345-015-1509-4.
  22. Reddy, A. T. et al. (2014). Nitrated fatty acids reverse pulmonary fibrosis by dedifferentiating myofibroblasts and promoting collagen uptake by alveolar macrophages. FASEB J. 28:5299-5310.
  23. Rubattu, S. et al. (2014). The C2238/αANP variant is a negative modulator of both viability and function of coronary artery smooth muscle cells. PLoS One 17:e113108.
  24. Hsieh, Y. P. et al. (2014). Arecoline stimulated early growth response-1 production in human buccal fibroblasts: Suppression by epigallocatechin-3-gallateHead Neck doi:10.1002/hed.23614.
  25. Je, Y. J. et al. (2014). Inhibitory role of Id1 on TGF-β-induced collagen expression in human dermal fibroblasts. Biochem Biophys Res Commun444:81-85.
  26. Herr, M. J. et al. (2014). Tetraspanin CD9 regulates cell contraction and actin arrangement via rhoa in human vascular smooth muscle cells. PLoS One 9:e106999.
  27. Nie, L. et al. (2014). Endothelial-Mesenchymal Transition in Normal Human Esophageal Endothelial Cells Cocultured With Esophageal Adenocarcinoma Cells: Role of IL-1β and TGF-β2. Am J Physiol Cell Physiol. 307:C859-C877.
  28. Kotio, K.U. et al. (2011). Implication of microRNAs in Atrial Natriuretic Peptide and Nitric Oxide Signaling in Vascular Smooth Muscle Cells. Am J Physiol Cell Physiol. 301:C929-C937.
  29. Schell, C. et al. (2010). 15-deoxy-delta12-14-prostaglandin-J2 induces hypertrophy and loss of contractility in human testicular peritubular cells: implications for human male fertility. Endocrinology 151:12571268.