24-Well Cell Invasion Assays, Basement Membrane

  • Fully quantify cell invasion with no manual cell counting
  • Plate inserts are precoated with ECM basement membrane
  • Colorimetric or fluorometric quantitation

 

Frequently Asked Questions about this product

General FAQs about Cell Invasion Assays

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

CytoSelect™ 24-Well Cell Invasion Assay, Basement Membrane
Catalog Number
CBA-110
Size
12 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$470.00
CytoSelect™ 24-Well Cell Invasion Assay, Basement Membrane
Catalog Number
CBA-111
Size
12 assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$470.00
CytoSelect™ 24-Well Cell Invasion Assay, Basement Membrane, Trial Size
Catalog Number
CBA-110-T
Size
4 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$235.00
CytoSelect™ 24-Well Cell Invasion Assay, Basement Membrane, Trial Size
Catalog Number
CBA-111-T
Size
4 assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$235.00
Product Details

The ability of malignant tumor cells to invade normal surrounding tissue contributes in large part to the morbidity and mortality of cancers. Cell invasion requires several distinct cellular functions including adhesion, motility, detachment, and extracellular matrix proteolysis.

Our CytoSelect™ Cell Invasion Assays utilize precoated inserts to assay the invasive properties of tumor cells. Invasive cells can be quantified in 24-well plates on either a standard microplate reader or a fluorescence plate reader. Inserts are precoated on the top of the membrane with ECM matrix gel (basement membrane), a protein mix isolated from EHS tumor cells.

CytoSelect™ Cell Invasion Assay Principle. Cell suspensions are placed on top of the gel matrix inside the upper chamber. After 24-48 hours, invasive cells move through the matrix and adhere to the bottom membrane of the insert. Non-invasive cells are then removed from the upper chamber, and invasive cells can be either stained and counted using a light microscope or quantified after extraction using a colorimetric or fluorometric plate reader.

Effects of Cytochalasin D on Invading Cells using the CytoSelect™ 24-Well Cell Invasion Assay. HT-1080 and NIH3T3 cells (negative control) were seeded at 300,000 cells/well and allowed to invade toward 10% FBS for 24 hrs in the presence or absence of 2µM Cytochalasin D. Invasive cells, on the bottom of the invasion membrane, were stained (above) and then quantified at OD 560 nm after extraction using a standard plate reader (not shown).

Recent Product Citations
  1. Ohnishi, Y. et al. (2016). Promotion of astrocytoma cell invasion by micro RNA-22 targeting of tissue inhibitor of matrix metalloproteinase-2. J. Neurosurg. Spine 11:1-8 (#CBA-110).
  2. Wei, Y. et al. (2016). MicroRNA-215 enhances invasion and migration by targeting retinoblastoma tumor suppressor gene 1 in high-grade glioma. Biotechnol. Lett. doi:10.1007/s10529-016-2251-8 (#CBA-110).
  3. Devis, L. et al. (2016). Activated leukocyte cell adhesion molecule (ALCAM) is a marker of recurrence and promotes cell migration, invasion and metastasis in early stage endometrioid endometrial cancer. J. Pathol. doi:10.1002/path.4851 (#CBA-110).
  4. Calabriso, N. et al. (2016). Red grape skin polyphenols blunt matrix metalloproteinase-2 and-9 activity and expression in cell models of vascular inflammation: protective role in degenerative and inflammatory diseases. Molecules. 21:1147 (#CBA-110).
  5. Nam, A. R. et al. (2016). Src as a therapeutic target in biliary tract cancer. Mol Cancer Ther. doi:10.1158/1535-7163.MCT-16-0013 (#CBA-110).
  6. Jin, S. et al. (2016). MicroRNA-544 inhibits glioma proliferation, invasion and migration but induces cell apoptosis by targeting PARK7. Am J Transl Res. 8:1826-1837 (#CBA-110).
  7. Tansi, F. L. et al. (2016). Potential of activatable FAP-targeting immunoliposomes in intraoperative imaging of spontaneous metastases. Biomaterials. 88:70-82 (#CBA-110).
  8. Oba, J. et al. (2016). CD10-equipped melanoma cells acquire highly potent tumorigenic activity: A plausible explanation of their significance for a poor prognosis. PLoS One. 11:e0149285 (#CBA-110).
  9. Slusser-Nore, A. et al. (2016). SPARC expression is selectively suppressed in tumor initiating urospheres isolated from As+ 3-and Cd+ 2-transformed human urothelial cells (UROtsa) stably transfected with SPARC. PLoS One. 11:e0147362 (#CBA-110).
  10. Desai, S. S. et al. (2015). Pro-oncogenic roles of HLXB9 protein in insulinoma cells through interaction with nono protein and down-regulation of the c-Met inhibitor Cblb (Casitas B-lineage Lymphoma b). J Biol Chem. 290:25595-25608 (#CBA-110).
  11. Hirata, H. et al. (2015). Long noncoding RNA MALAT1 promotes aggressive renal cellcarcinoma through Ezh2 and interacts with miR-205.Cancer Res. 75:1322-1331 (#CBA-110).
  12. Cheng, X. et al. (2015). LAPTM4B-35, a cancer-related gene, is associated with poor prognosis in TNM stages I-III gastric cancer patients.PLoS One. 10:e0121559 (#CBA-110).
  13. Kang, J. H. et al. (2015). Curcumin sensitizes human lung cancer cells to apoptosis and metastasis synergistically combined with carboplatinExp Biol Medi (Maywood).  doi:10.1177/1535370215571881 (#CBA-110).
  14. Chen, R. et al. (2015). The acetate/ACSS2 switch regulates HIF-2 stress signaling in the tumor cell microenvironment. PLoS One. 10:e0116515-e0116515 (#CBA-110).
  15. Wang, R. J. et al. (2015). MiRNA-873 inhibits glioblastoma tumorigenesis and metastasis by suppressing the expression of IGF2BP1J Biol Chem.  doi:10.1074/jbc.M114.624700 (#CBA-110).
  16. Li, Y. et al. (2015). Slug contributes to cancer progression by direct regulation of ERα signaling pathway. Int J Oncol. 46:1461-1472 (#CBA-110).
  17. Modali, S. D. et al. (2015). Epigenetic regulation of the lncRNA MEG3 and its target c-MET in pancreatic neuroendocrine tumors. Mol Endocrinol. 29:224-237 (#CBA-110).
  18. Osawa, Y. et al. (2015). Decreased expression of carbonyl reductase 1 promotes ovarian cancer growth and proliferation. Int J Oncol. 46:1252-1258 (#CBA-110).
  19. Kośla, K. et al. (2014). WWOX modulates the gene expression profile in the T98G glioblastoma cell line rendering its phenotype less malignant. Oncol Rep. 32:1362-1368 (#CBA-110).
  20. Akl, M. R. et al. (2014). The marine-derived sipholenol A-4-O-3',4'-dichlorobenzoate inhibits breast cancer growth and motility in vitro and in vivo through the suppression of Brk and FAK signaling. Mar Drugs. 12:2282-2304 (#CBA-110).
  21. Akl, M. R. et al. (2014). Olive phenolics as c-Met inhibitors: (-)-Oleocanthal attenuates cell proliferation, invasiveness, and tumor growth in breast cancer models.PLoS One. 9:e97622 (#CBA-110).
  22. Eun, J. R. et al. (2014). Hepatoma SK Hep-1 cells exhibit characteristics of oncogenic mesenchymal stem cells with highly metastatic capacity. PLoS One.  9:e110744 (#CBA-110).
  23. Kunjithapatham, R. et al. (2014). Reversal of anchorage-independent multicellular spheroid into a monolayer mimics a metastatic model.  Sci Rep. doi: 10.1038/srep06816 (#CBA-110).
  24. Iseri, Ö. D. et al. (2014). beta-Adrenoreceptor antagonists reduce cancer cell proliferation, invasion, and migration. Pharm Biol. 52:1374-1381 (#CBA-110).
  25. Zhang, Y. et al. (2014). The clinical and biological significance of STAT1 in esophageal squamous cell carcinoma.BMC cancer. 14:791 (#CBA-110).
  26. Yu, Y. et al. (2014). Single cell sorting identifies progenitor cell population from full thickness bovine articular cartilage. Osteoarthritis Cartilage. 22:1318-1326 (#CBA-110).
  27. Xing, X. et al. (2014). PP242 suppresses cell proliferation, metastasis, and angiogenesis of gastric cancer through inhibition of the PI3K/AKT/mTOR pathway. Anticancer Drugs. 25:1129 (#CBA-110).
  28. Tang, X. et al. (2014). A mechanically-induced colon cancer cell population shows increased metastatic potential. Mol Cancer. 13:131 (#CBA-110).
  29. Gao, X. et al. (2014). LEF1 regulates glioblastoma cell proliferation, migration, invasion, and cancer stem-like cell self-renewal. Tumor Biol. 35:11505-11511 (#CBA-110).
  30. Gudey, S. K. et al. (2014). TRAF6 stimulates the tumor-promoting effects of TGFβ type I receptor through polyubiquitination and activation of presenilin 1. Sci Signal. doi:10.1126/scisignal.2004207 (#CBA-110).
  31. Hu, H. et al. (2014).  Changes in Glucose-6-Phosphate Dehydrogenase Expression Results in Altered Behavior of HBV-Associated Liver Cancer Cells. Am J Physiol Gastrointest Liver Physiol. 307:G611-G622 (#CBA-110).
  32. Xue, M. et al. (2014).  Endogenous MMP-9 and not MMP-2 promotes rheumatoid synovial fibroblast survival, inflammation and cartilage degradation. Rheumatology (Oxford)53:2270-2279 (#CBA-110)..
  33. Cunniffe, C. et al. (2014).  The Role of Claudin-1 and Claudin-7 in Cervical Tumorigenesis. Anticancer Res. 34:2851-2857 (#CBA-110).
  34. Mato, E. et al. (2014). ABCG2/BCRP gene expression is related to epithelial-mesenchymal transition inducer genes in a papillary thyroid carcinoma cell line (TPC-1). J. Mol. Endocrinol. 52:289-300 (#CBA-110).
  35. Tu, Y. et al. (2013). MicroRNA-218 Inhibits Glioma Invasion, Migration, Proliferation, and Cancer Stem-like Cell Self-Renewal by Targeting the Polycomb Group Gene Bmi1. J. Neurosci. 33:16346-16359 (#CBA-110).
  36. Gradilone, S. et al. (2013). HDAC6 Inhibition Restores Ciliary Expression and Decreases Tumor Growth. Cancer Res. 73:2259-2270 (#CBA-110).
  37. Nam, H. et al. (2013). Antitumor Activity of Saracatinib (AZD0530), a c-Src/Abl Kinase Inhibitor, Alone or in Combination with Chemotherapeutic Agents in Gastric Cancer. Mol. Cancer. Ther. 12:16-26 (#CBA-110).
  38. DiNatale, B. et al. (2012). Ah Receptor Antagonism Represses Head and Neck Tumor Cell Aggressive Phenotype. Mol. Cancer Res. 10: 1369-1379 (#CBA-110).
  39. Citterio, C. et al. (2012). The Rho Exchange Factors Vav2 and Vav3 Control a Lung Metastasis–Specific Transcriptional Program in Breast Cancer Cells. Sci. Signal. 5: ra71 (#CBA-110).
  40. Lee, J. et al. (2012). Signal Transducer and Activator of Transcription 3 (STAT3) Protein Suppresses Adenoma-to-carcinoma Transition in Apcmin/+ Mice via Regulation of Snail-1 (SNAI) Protein Stability. J.Biol.Chem. 287: 18182-18189 (#CBA-110).
  41. Zhang, L. et al. (2011). MicroRNA-1258 Suppresses Breast Cancer Brain Metastasis by Targeting Heparanase. Cancer Res. 71:645-654. (#CBA-110)
  42. Piccaluga, P.P. et al. (2011). Gene Expression Analysis Uncovers Similarity and Differences Among Burkitt Lymphoma Subtypes. Blood 117:3596-3608. (#CBA-110)
  43. Coon, B. et al. (2010). The Epsin Family of Endocytic Adaptors Promotes Fibrosarcoma Migration and Invasion. J. Biol. Chem. 285:33073-33081. (#CBA-110)
  44. Hirata, H. et al. (2010). Role of secreted Frizzled-related protein3 in Human Renal Cell Carcinoma. Cancer Res. 70:1896-1905. (#CBA-110)
  45. Chen, H. et al. (2009). Extracellular Signal-Regulated Kinase Signaling Pathway Regulates Breast Cancer Cell Migration by Maintaining Slug Expression. Cancer Res. 69:9228-9235 (#CBA-110).
  46. Cabello, C. et al. (2009). The Cinnamon-Derived Michael Acceptor Cinnamic Aldehyde Impairs Melanoma Cell Proliferation, Invasiveness, and Tumor Growth. Free Rad. Biol. and Med. 46(2):220-231. (#CBA-110)
  47. Zhang, Q. et al. (2009). Nuclear factor-kB Mediated Transforming Growth Factor-ß-Induced Expression of Vimentin is an Independent Predictor of Biochemical Recurrence after Radial Prostatectomy. Clin. Cancer Res. 15:3557-3567. (#CBA-110)
  48. He, X. et al. (2007). Knockdown of Polypyrimidine Tract-Binding Protein Suppresses Ovarian Tumor Cell Growth and Invasiveness in Vivo. Oncogene 26:4961-4968 (#CBA-110).
  49. Ji, H. et al. (2007). LKB1 Modulates Lung Cancer Differentiation and Metastasis. Nature 448:807-810. (#CBA-110)
  50. Phinney, D. et al. (2006). Murine Mesenchymal Stem Cells Transplanted to the Central Nervous System of Neonatal Versus Adult Mice Exhibit Distinct Engraftment Kinetics and Express Receptors that Guide Neuronal Cell Migration. Stem Cells Dev. 15(3) :437-447 (#CBA-110).
  51. Lopez-Campistrous, A. et al. (2016). PDGFRα regulates follicular cell differentiation driving treatment resistance and disease recurrence in papillary thyroid cancer. EBioMed. doi:10.1016/j.ebiom.2016.09.007 (#CBA-111).
  52. Engel, N. et al. (2016). Antitumor evaluation of two selected Pakistani plant extracts on human bone and breast cancer cell lines. BMC Complement Altern Med. doi:10.1186/s12906-016-1215-9 (#CBA-111).
  53. Almami, A. et al. (2016). ING3 is associated with increased cell invasion and lethal outcome in ERG-negative prostate cancer patients. Tumor Biol. doi:10.1007/s13277-016-4802-y (#CBA-111).