24-Well Cell Invasion Assays, Basement Membrane

24-Well Cell Invasion Assays, Basement Membrane
  • Fully quantify cell invasion with no manual cell counting
  • Plate inserts are precoated with ECM basement membrane
  • Colorimetric or fluorometric quantitation

 

Frequently Asked Questions about this product

General FAQs about Cell Invasion Assays

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

CytoSelect™ 24-Well Cell Invasion Assay, Basement Membrane
Catalog Number
CBA-110
Size
12 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$485.00
CytoSelect™ 24-Well Cell Invasion Assay, Basement Membrane
Catalog Number
CBA-111
Size
12 assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$485.00
CytoSelect™ 24-Well Cell Invasion Assay, Basement Membrane, Trial Size
Catalog Number
CBA-110-T
Size
4 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$240.00
CytoSelect™ 24-Well Cell Invasion Assay, Basement Membrane, Trial Size
Catalog Number
CBA-111-T
Size
4 assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$240.00
Product Details

The ability of malignant tumor cells to invade normal surrounding tissue contributes in large part to the morbidity and mortality of cancers. Cell invasion requires several distinct cellular functions including adhesion, motility, detachment, and extracellular matrix proteolysis.

Our CytoSelect™ Cell Invasion Assays utilize precoated inserts to assay the invasive properties of tumor cells. Invasive cells can be quantified in 24-well plates on either a standard microplate reader or a fluorescence plate reader. Inserts are precoated on the top of the membrane with ECM matrix gel (basement membrane), a protein mix isolated from EHS tumor cells.

CytoSelect™ Cell Invasion Assay Principle. Cell suspensions are placed on top of the gel matrix inside the upper chamber. After 24-48 hours, invasive cells move through the matrix and adhere to the bottom membrane of the insert. Non-invasive cells are then removed from the upper chamber, and invasive cells can be either stained and counted using a light microscope or quantified after extraction using a colorimetric or fluorometric plate reader.

Effects of Cytochalasin D on Invading Cells using the CytoSelect™ 24-Well Cell Invasion Assay. HT-1080 and NIH3T3 cells (negative control) were seeded at 300,000 cells/well and allowed to invade toward 10% FBS for 24 hrs in the presence or absence of 2µM Cytochalasin D. Invasive cells, on the bottom of the invasion membrane, were stained (above) and then quantified at OD 560 nm after extraction using a standard plate reader (not shown).

Recent Product Citations
  1. Wang, F. et al. (2020). Combination therapy of gefitinib and miR-30a-5p may overcome acquired drug resistance through regulating the PI3K/AKT pathway in non-small cell lung cancer. Ther Adv Respir Dis. 14:1753466620915156. doi: 10.1177/1753466620915156 (#CBA-110).
  2. Chen, C. et al. (2020). The circular RNA 001971/miR-29c-3p axis modulates colorectal cancer growth, metastasis, and angiogenesis through VEGFA. J Exp Clin Cancer Res. 39(1):91. doi: 10.1186/s13046-020-01594-y (#CBA-110).
  3. Lim, W.C. et al. (2020). Catechol inhibits epidermal growth factor-induced epithelial-to-mesenchymal transition and stem cell-like properties in hepatocellular carcinoma cells. Sci Rep. 10(1):7620. doi: 10.1038/s41598-020-64603-2 (#CBA-110).
  4. Díaz-García, D. et al. (2020). Mesoporous silica nanoparticles functionalized with a dialkoxide diorganotin(IV) compound: In search of more selective systems against cancer cells. Micropor Mesopor Mat. doi: 10.1016/j.micromeso.2020.110154 (#CBA-110).
  5. Shimoyama, H. et al. (2020). Partial silencing of fucosyltransferase 8 gene expression inhibits proliferation of Ishikawa cells, a cell line of endometrial cancer. Biochem Biophys Rep. 22:100740. doi: 10.1016/j.bbrep.2020.100740 (#CBA-110).
  6. Felsenstein, M. et al. (2020). Generation and characterization of a cell line from an intraductal tubulopapillary neoplasm of the pancreas. Lab Invest. doi: 10.1038/s41374-020-0372-0 (#CBA-110).
  7. Montoro-García, S. et al. (2020). Novel anti-invasive properties of a Fascin1 inhibitor on colorectal cancer cells. J Mol Med (Berl). doi: 10.1007/s00109-020-01877-z (#CBA-110).
  8. Olgun, N.S. et al. (2020). Mild Steel and Stainless Steel Welding Fumes Elicit Pro-Inflammatory and Pro-Oxidant Effects in First Trimester Trophoblast Cells. Am J Reprod Immunol. doi: 10.1111/aji.13221 (#CBA-110).
  9. Gan, L. et al. (2019). Vitamin C Inhibits Triple-Negative Breast Cancer Metastasis by Affecting the Expression of YAP1 and Synaptopodin 2. Nutrients. 11(12). pii: E2997. doi: 10.3390/nu11122997 (#CBA-110).
  10. Armignacco, R. et al. (2019). The Adipose Stem Cell as a Novel Metabolic Actor in Adrenocortical Carcinoma Progression: Evidence from an In Vitro Tumor Microenvironment Crosstalk Model. Cancers (Basel). 11(12). pii: E1931. doi: 10.3390/cancers11121931 (#CBA-110).
  11. Unterleuthner, D. et al. (2019). Cancer-associated fibroblast-derived WNT2 increases tumor angiogenesis in colon cancer. Angiogenesis. doi: 10.1007/s10456-019-09688-8 (#CBA-110).
  12. Ritter, A. et al. (2019). Subcutaneous and Visceral Adipose-Derived Mesenchymal Stem Cells: Commonality and Diversity. Cells. 8(10). pii: E1288. doi: 10.3390/cells8101288 (#CBA-110).
  13. Ritter, A. et al. (2019). Restoration of primary cilia in obese adipose-derived mesenchymal stem cells by inhibiting Aurora A or extracellular signal-regulated kinase. Stem Cell Res Ther. 10(1):255. doi: 10.1186/s13287-019-1373-z (#CBA-110).
  14. Ling, X. et al. (2019). miR‑505 suppresses prostate cancer progression by targeting NRCAM. Oncology Reports. doi: 10.3892/or.2019.7231 (#CBA-110).
  15. Hoock, S.C. et al. (2019). RITA modulates cell migration and invasion by affecting focal adhesion dynamics. Mol Oncol. doi: 10.1002/1878-0261.12551 (#CBA-110).
  16. Li, X. et al. (2019). Colonic Injuries Induced by Inhalational Exposure to Particulate‐Matter Air Pollution. Advanced Science. 1900180. doi: 10.1002/advs.201900180 (#CBA-110).
  17. Wang, Y. et al. (2019). Association between polymorphism in the promoter region of lncRNA GAS5 and the risk of colorectal cancer. Biosci Rep. 39(4). pii: BSR20190091. doi: 10.1042/BSR20190091 (#CBA-110).
  18. Singhal, J. et al. (2019). RLIP inhibition suppresses breast-to-lung metastasis. Cancer Lett. 447:24-32. doi: 10.1016/j.canlet.2019.01.023 (#CBA-110).
  19. Xue, M. et al. (2019). Activated protein C targets immune cells and rheumatoid synovial fibroblasts to prevent inflammatory arthritis in mice. Rheumatology (Oxford). doi: 10.1093/rheumatology/key429 (#CBA-110).
  20. Mora, D.P.P. et al. (2019). The chemical composition and events related to the cytotoxic effects of propolis on osteosarcoma cells: A comparative assessment of Colombian samples. Phytother Res. 33(3):591-601. doi: 10.1002/ptr.6246 (#CBA-110).
  21. Ueta, K. et al. (2018). PROX1 Is Associated with Cancer Progression and Prognosis in Gastric Cancer. Anticancer Res. 38(11):6139-6145. doi: 10.21873/anticanres.12966 (#CBA-110).
  22. Singhal, J. et al. (2018). 2'-Hydroxyflavanone inhibits in vitro and in vivo growth of breast cancer cells by targeting RLIP76. Mol Carcinog. 57(12):1751-1762. doi: 10.1002/mc.22894 (#CBA-110).
  23. Genna, A. et al. (2018). Pyk2 and FAK differentially regulate invadopodia formation and function in breast cancer cells. J Cell Biol. 217(1):375-395. doi: 10.1083/jcb.201702184 (#CBA-110).
  24. Katara, G.K. et al. (2019). Interleukin-22 promotes development of malignant lesions in a mouse model of spontaneous breast cancer. Mol Oncol. doi: 10.1002/1878-0261.12598 (#CBA-111).
  25. Millien, G. et al. (2018). ETS1 regulates Twist1 transcription in a Kras G12D /Lkb1-/- metastatic lung tumor model of non-small cell lung cancer. Clin Exp Metastasis. doi: 10.1007/s10585-018-9912-z (#CBA-111).
  26. Paluszczak, J., et al. (2017). Lichen-derived caperatic acid and physodic acid inhibit Wnt signaling in colorectal cancer cells. Mol Cell Biochem. 441:109–124. doi: 10.1007/s11010-017-3178-7 (#CBA-111).
  27. Steury, M. et al. (2017). G-protein-coupled receptor kinase-2 is a critical regulator of TNFα signaling in colon epithelial cells. Biochem. J. 474(14):2301-2313 (#CBA-111).
  28. Lopez-Campistrous, A. et al. (2016). PDGFRα regulates follicular cell differentiation driving treatment resistance and disease recurrence in papillary thyroid cancer. EBioMed. doi:10.1016/j.ebiom.2016.09.007 (#CBA-111).
  29. Engel, N. et al. (2016). Antitumor evaluation of two selected Pakistani plant extracts on human bone and breast cancer cell lines. BMC Complement Altern Med. doi:10.1186/s12906-016-1215-9 (#CBA-111).
  30. Almami, A. et al. (2016). ING3 is associated with increased cell invasion and lethal outcome in ERG-negative prostate cancer patients. Tumor Biol. doi:10.1007/s13277-016-4802-y (#CBA-111).