Comet Assay Kits, 3-Well

  • Useful screening tool for various types of DNA damage
  • Slides are specially treated for adhesion of low-melting agarose
  • Easy visualization by epifluorescence microscopy

 

Frequently Asked Questions about this product

General FAQs about Oxidative Stress

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

OxiSelect™ Comet Assay Kit (3-Well Slides)
Catalog Number
STA-351-5
Size
5 x 75 assays
Detection
Fluorescence Microscopy
Manual/Data Sheet Download
SDS Download
Price
$1,995.00
OxiSelect™ Comet Assay Kit (3-Well Slides)
Catalog Number
STA-351
Size
75 assays
Detection
Fluorescence Microscopy
Manual/Data Sheet Download
SDS Download
Price
$475.00
OxiSelect™ Comet Assay Kit (3-Well Slides)
Catalog Number
STA-350
Size
15 assays
Detection
Fluorescence Microscopy
Manual/Data Sheet Download
SDS Download
Price
$240.00
Product Details

Our OxiSelect™ 3-Well Comet Assay Kits provide a fast, convenient way to screen for general DNA damage, regardless of the source or nature of the damage. Kits include Comet Slides, reagents, and a fluorescent dye to visualize cells under an epifluorescence microscope.

Epifluorescence Microscopy Visualization of DNA Damage using the OxiSelect™ Comet Assay Kit. For detailed explanation please see "Calculation of Results" section in product manual.

Etoposide Treatment of Jurkat Cells. Jurkat cells untreated (left) and treated (right) with Etoposide before performing OxiSelect™ Comet Assay under alkaline electrophoresis conditions at 33V / 300 mA for 15 minutes.

Recent Product Citations
  1. Maiuri, T. et al. (2016). Huntingtin is a scaffolding protein in the ATM oxidative DNA damage response complex. Hum. Mol. Genet. doi:10.1093/hmg/ddw395.
  2. Irianto, J. et al. (2016). Nuclear constriction segregates mobile nuclear proteins away from chromatin. Mol. Bio. Cell doi:10.1091/mbc.E16-06-0428.
  3. Andronescu, E. et al. (2016). Nanomaterials for medical applications: Benefits and risks. J Nanomater. doi:10.1155/2016/8284319.
  4. Liu, Z. et al. (2016). Canonical microRNAs enable differentiation, protect against DNA damage, and promote cholesterol biosynthesis in neural stem cells. Stem Cells and Dev. doi:10.1089/scd.2016.0259.
  5. Dai, C. et al. (2016). Curcumin ameliorates furazolidone-induced DNA damage and apoptosis in human hepatocyte L02 cells by inhibiting ROS production and mitochondrial pathway. Molecules. 21:1061.
  6. Beegle, J. R. et al. (2016). Preclinical evaluation of mesenchymal stem cells overexpressing VEGF to treat critical limb ischemia. Mol Ther Methods Clin Dev.doi:10.1038/mtm.2016.53.
  7. Suzuki, Y. et al. (2016). Pharmacodynamics of anti-inflammatory drugs–intranasal corticosteroid and dna damage. Pharmacodynamics of anti-inflammatory drugs. 117-126.
  8. Zhang, J. et al. (2016). Inhibition of Glucose-6-Phosphate Dehydrogenase could Enhance 1, 4-Benzoquinone-induced Oxidative Damage in K562 Cells. Oxid Med Cell Longev. doi:10.1155/2016/3912515.
  9. Jang, J. H. et al. (2016). APO-9′-fucoxanthinone extracted from undariopsis peteseniana protects oxidative stress-mediated apoptosis in cigarette smoke-exposed human airway epithelial cells. Mar Drugs. doi:10.3390/md14070140.
  10. Ebeid, S. A. et al. (2016). Assessment of the radioprotective effect of propolis in breast cancer patients undergoing radiotherapy. New perspective for an old honey bee product. J Radiat Res Appl Sci. doi:10.1016/j.jrras.2016.06.001.
  11. Wang, H, & Kim, N. H. (2016). CDK2 is required for the DNA damage response during porcine early embryonic development. Biol Reprod. doi:10.1095/​biolreprod.116.140244.
  12. Zhao, X. et al. (2016). Dioscin induces apoptosis in human cervical carcinoma HeLa and SiHa cells through ROS-mediated DNA damage and the mitochondrial signaling pathway. Molecules. doi:10.3390/molecules21060730.
  13. Chen, X. et al. (2016). Zidovudine, abacavir and lamivudine increase the radiosensitivity of human esophageal squamous cancer cell lines. Oncol Rep. 36:239-246.
  14. Coleman, J. et al. (2016). Detecting Apoptosis, Autophagy, and Necrosis. Apoptosis Methods in Toxicology . doi:10.1007/978-1-4939-3588-8_5.
  15. Ding, Y. et al. (2016). Induction of ROS overload by alantolactone prompts oxidative DNA damage and apoptosis in colorectal cancer cells. Int J Mol Sci. doi:10.3390/ijms17040558.
  16. Cui, F. M. et al. (2016). The role of miR-34a in tritiated water toxicity in human umbilical vein endothelial cells. Dose-Response. doi:10.1177/1559325816638585.
  17. Laks, D. R. et al. (2016). Inhibition of nucleotide synthesis targets brain tumor stem cells in a subset of glioblastoma. Mol Cancer Ther. doi:10.1158/1535-7163.MCT-15-0982.
  18. Abubakar, I. B. et al. (2016). Synergistic cytotoxic effects of combined δ-tocotrienol and jerantinine B on human brain and colon cancers. J Ethnopharmacol. doi:10.1016/j.jep.2016.03.004.
  19. Hofstetter, C. et al. (2016). Inhibition of KDM6 activity during murine ESC differentiation induces DNA damage.J Cell Sci. 129:788-803.
  20. Si, L. et al. (2016). Dioscin suppresses human laryngeal cancer cells growth via induction of cell-cycle arrest and MAPK-mediated mitochondrial-derived apoptosis and inhibition of tumor invasion. Eur J Pharmacol. doi:10.1016/j.ejphar.2016.02.009.
  21. Qu, L. et al. (2016). Corosolic acid analogue, a natural triterpenoid saponin, induces apoptosis on human hepatocarcinoma cells through mitochondrial pathway in vitro. Pharm Biol. doi:10.3109/13880209.2015.1104699.
  22. Singh, A. K. et al. (2015). Parental age affects somatic mutation rates in the progeny of flowering plants. Plant Physiol. doi:10.1104/pp.15.00291.
  23. Yuan, L. et al. (2015). Serum collected from fruit and vegetable juice treated rats antagonizing H2O2-induced oxidative damage in PC12 cells. J Funct Foods. 20:496-505.
  24. Ramy, N. et al. (2015). Jaundice, phototherapy and DNA damage in full-term neonates.  J Perinatoldoi:10.1038/jp.2015.166.
  25. Wu, C. F. et al. (2015). Anticancer activity of cryptotanshinone on acute lymphoblastic leukemia cells. Arch Toxicol. doi:10.​1007/​s00204-015-1616-4.
  26. Kim, M. J. et al. (2015). Antibacterial effect and mechanism of high-intensity 405±5nm light emitting diode on Bacillus cereus, Listeria monocytogenes, and Staphylococcus aureus under refrigerated condition. J Photochem Photobiol B. 153:33-39.
  27. Wang, X. et al. (2015). Enhancement of arabinocytosine (AraC) toxicity to AML cells by a differentiation agent combination. J Steroid Biochem Mol Biol.  doi:10.1016/j.jsbmb.2015.08.023.
  28. Sun, X. et al. (2015). Electrochemical detection of 8-hydroxy-2′-deoxyguanosine as a biomarker for oxidative DNA damage in HEK293 cells exposed to 3-chloro-1, 2-propanediolAnal Methods.doi:10.1039/C5AY01246E.
  29. Neumann, J. et al. (2015). Mangrove dolabrane‐type of diterpenes tagalsins suppresses tumor growth via ROS‐mediated apoptosis and ATM/ATR–Chk1/Chk2‐regulated cell cycle arrest. Int J Cancer.  doi: 10.1002/ijc.29629.
  30. Singh, A. K. et al. (2015). Parental age affects somatic mutation rates in the progeny of flowering plants. Plant Physiol. 168:247-257.
  31. Hou, W. et al. (2015). The protecting effect of deoxyschisandrin and schisandrin B on HaCaT cells against UVB-induced damage. PLoS One. 10:e0127177.
  32. Kim, M. J. et al. (2015). Inactivation by 405±5 nm light emitting diode on Escherichia coli O157: H7, Salmonella Typhimurium, and Shigella sonnei under refrigerated condition might be due to the loss of membrane integrity. Food Control. doi:10.1016/j.foodcont.2015.05.012.
  33. Haeger, S. M. et al. (2015). Smad4 loss promotes lung cancer formation but increases sensitivity to DNA topoisomerase inhibitors. Oncogene.  doi: 10.1038/onc.2015.112.
  34. Ong, J. Y. et al. (2015). 2-Methoxy-1, 4-naphthoquinone (MNQ) induces apoptosis of A549 lung adenocarcinoma cells via oxidation-triggered JNK and p38 MAPK signaling pathways. Life Sci. doi: 10.1016/j.lfs.2015.03.019.
  35. Prasad, M. A. et al. (2015). Ebf1 heterozygosity results in increased DNA damage in pro-B cells and their synergistic transformation by Pax5 haploinsufficiencyBlood.  doi: 10.1182/blood-2014-12-617282. 
  36. Obstoy, B. et al. (2015). Safety and performance analysis of acriflavine and methylene blue for in vivo imaging of precancerous lesions using fibered confocal fluorescence microscopy (FCFM): an experimental study. BMC Pulm Med. 15:30.
  37. Xiong, J. et al. (2015). Stemness factor Sall4 is required for DNA damage response in embryonic stem cells.J Cell Biol. 208:513-520.
  38. Hu, Y. et al. (2015). Bile acids regulate nuclear receptor (nur77) expression and intracellular location to control proliferation and apoptosis. Mol Cancer Res. 13:291-292.
  39. Gong, L. et al. (2015). p53 isoform Δ113p53/Δ133p53 promotes DNA double-strand break repair to protect cell from death and senescence in response to DNA damage. Cell Res. 25:351-369.  
  40. Jin, L. et al. (2015). Association between oxidative DNA damage and the expression of 8-oxoguanine DNA glycosylase 1 in lung epithelial cells of neonatal rats exposed to hyperoxiaMol Med Rep. doi: 10.3892/mmr.2015.3339.
  41. Galán, M. et al. (2014). Mechanism of endoplasmic reticulum stress-induced vascular endothelial dysfunction. Biochim Biophys Acta. 1843:1063-1075.
  42. Weinandy, A. et al. (2014). Cetuximab induces eme1-mediated DNA repair: a novel mechanism for cetuximab resistance. Neoplasia. 16:207-220.
  43. Kaushik, R. & Balasubramanian, R. (2014). A comparative toxicity evaluation of Escherichia coli-targeted ssDNA and chlorine in HepG2 cells. Water Res. 48:519-528.
  44. Narayanaswamy, P. B. et al. (2014). Loss of urokinase receptor sensitizes cells to DNA Damage and delays DNA repair. PLoS One. 9:e101529.
  45. Sinha, M. et al. (2014). Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle. Science. 344:649-652.
  46. Liu, C. et al. (2014). Multi-biomarker responses in green mussels exposed to PFCs: effects at molecular, cellular, and physiological levels. Environ Sci Pollut Res Int.  21:2785-2794.
  47. Thiruvengadam, M. et al. (2014). Physiological, metabolic, and transcriptional effects of biologically-synthesized silver nanoparticles in turnip (Brassica rapa ssp. rapa L.). Protoplasma. doi:10.1007/s00709-014-0738-5.
  48. Gaivão, I and Sierra, L. M. (2014). Drosophila comet assay: insights, uses, and future perspectives. Front Genet. 5:304.
  49. Liu, M. et al. (2014). Potent effects of flavonoid-rich extract from Rosa laevigata Michx fruit against hydrogen peroxide-induced damage in PC12 cells via attenuation of oxidative stress, inflammation and apoptosis. Molecules. 19:11816-11832.
  50. Lee, J. H. et al. (2014). Direct activation of ATM by resveratrol under oxidizing conditions.  PLoS One. 9:e97969.
  51. Wang, Y. et al. (2014). Repeated blast exposures cause brain DNA fragmentation in mice.  J Neurotrauma.31:498-504.
  52. Li, L. et al. (2014). Ionizing radiation causes increased tau phosphorylation in primary neurons.  J Neurochem. 131:86-93.
  53. Joly, F. et al. (2014). Thermal water from uriage-les-bains exerts DNA protection, induction of catalase activity and Claudin-6 expression on UV irradiated human skin in addition to its own antioxidant properties. JCDSA. doi: 10.4236/jcdsa.2014.42015. 
  54. Fang, W. et al. (2014). The functional polymorphism of NBS1 p. Glu185Gln is associated with an increased risk of lung cancer in Chinese populations: Case–control and a meta-analysis. Mutat Res-Fund Mol M. 770:61-68.
  55. Kim, J. G. et al. (2014). Combination effect of epigenetic regulation and ionizing radiation in colorectal cancer cells. PLoS One. 9:e105405.
  56. Deng, L. J. et al. (2014). Hellebrigenin induces cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2 cells through inhibition of Akt.Chem Biol Interact. 219:184-194.
  57. Won, K. J. et al. (2014). Human Noxin is an anti-apoptotic protein in response to DNA damage of A549 non-small cell lung carcinoma. Int J Cancer. 134:2595-2604.
  58. Chang, J. W. et al. (2014). Non-thermal atmospheric pressure plasma induces apoptosis in oral cavity squamous cell carcinoma: Involvement of DNA-damage-triggering sub-G(1) arrest via the ATM/p53 pathway.Arch Biochem Biophys. 545:133-140.
  59. Xu, L. et al. (2014). In vitro anti-proliferative effects of Zuojinwan on eight kinds of human cancer cell lines. Cytotechnology. 66:37-50.
  60. Shawki, S. M. et al. (2014). Increased DNA damage in hepatitis C virus-related hepatocellular carcinoma. DNA Cell Biol. 33:884-890.
  61. Lebeda, I. & Flajshans, M. (2014). Influence of photoreactivation on induction of gynogenesis in sterlet,Acipenser ruthenus. Aquaculture Research. doi: 10.1111/are.12596.
  62. Bae, H. K. et al. (2014). Antioxidant treatment during manipulation procedures prevents mitochondrial and DNA damage and enhances nuclear reprogramming of bovine somatic cell nuclear transfer embryos. Reprod Fertil Dev. doi: 10.1071/RD14027.
  63. Roda, R. H. et al. (2014). Ataxia with oculomotor apraxia type 2 fibroblasts exhibit increased susceptibility to oxidative DNA damage. J Clin Neurosci. 21:1627-1631.
  64. Wang, L. et al. (2014).  Osmotic Stress-induced Phosphorylation of H2AX by Polo-like Kinase 3 Affects Cell Cycle Progression in Human Corneal Epithelial Cells.J Biol Chem. 289:29827-29835.
  65. Savage, K.I. et al. (2014).  BRCA1 Deficiency Exacerbates Estrogen-Induced DNA Damage and Genomic Instability. Cancer Res. 74:2773-2784.
  66. Wu, A. et al. (2013). Cell Motility and Drug Gradients in the Emergence of Resistance to Chemotherapy. PNAS. 110:16103-16108 (#STA-350).
  67. Luo, Y. et al. (2013). SMC1-Mediated Intra-S-Phase Arrest Facilitates Bocavirus DNA Replication. J. Virol. 87:4017-4032 (#STA-350).
  68. Robin, T.P. et al. (2012). EWS/FLI1 Regulates EYA3 in Ewing Sarcoma via Modulation of miRNA-708, Resulting in Increased Cell Survival and Chemoresistance. Mol. Cancer Res. 10:1098-1108. (#STA-351).
  69. Choi, S.K. et al. (2012).Poly(ADP-Ribose) Polymerase 1 Inhibition Improves Coronary Arteriole Function in Type 2 Diabetes Mellitus. Hypertension. 59:1060-1068.(#STA-351).
  70. Li,Y.J. et al. (2012). Gold Nanoparticles as a Platform for Creating a Multivalent Poly-SUMO Chain Inhibitor that also Augments Ionizing Radiation. PNAS. 109:4092-4097. (#STA-350).
  71. Li, H.F. et al. (2011). A High-Throughput Screen with Isogenic PTEN+/+ and PTEN–/– Cells Identifies CID1340132 as a Novel Compound that Induces Apoptosis in PTEN and PIK3CA Mutant Human Cancer Cells. J. Biomol Screen. 16:383-393. (#STA-350).