Cyclic AMP Assays

Cyclic AMP Assays
  • Sensitivity as low as 1 pmol/mL
  • Suitable for use with cell and tissue lysates, urine, plasma, or culture medium
  • Colorimetric and chemiluminescent formats
  • Convenient strip-well plate format

 

Frequently Asked Questions about this product

Video: Color Development in an ELISA

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

cAMP ELISA Kit
Catalog Number
STA-501
Size
96 wells
Detection
Chemiluminescent
Manual/Data Sheet Download
SDS Download
Price
$535.00
cAMP ELISA Kit
Catalog Number
STA-501-5
Size
5 x 96 wells
Detection
Chemiluminescent
Manual/Data Sheet Download
SDS Download
Price
$2,175.00
cAMP ELISA Kit
Catalog Number
STA-500
Size
96 wells
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$535.00
cAMP ELISA Kit
Catalog Number
STA-500-5
Size
5 x 96 wells
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$2,175.00
Product Details

Cyclic AMP (cAMP) is an important regulatory molecule in the GPCR signaling cascade. Our cAMP ELISA Kits provide a highly sensitive method to measure low levels of cyclic AMP in a variety of sample types. These cAMP assays deliver throughput, sensitivity and convenience for a superior user experience.

cAMP ELISA Kit Assay Principle

cAMP ELISA Standard Curve

Recent Product Citations
  1. Peng, Y.J. et al. (2025). Signal Transduction Pathway Mediating Carotid Body Dependent Sympathetic Activation and Hypertension by Chronic Intermittent Hypoxia. Function (Oxf). 6(1):zqaf003. doi: 10.1093/function/zqaf003(#STA-501).
  2. Jin, C.L. et al. (2024). Age-related calcium signaling disturbance restricted cAMP metabolism and induced ovarian oxidation stress in laying ducks. Poult Sci. 104(1):104551. doi: 10.1016/j.psj.2024.104551 (#STA-501).
  3. Jin, Z. et al. (2023). Vertical sleeve gastrectomy-derived gut metabolite licoricidin activates beige fat thermogenesis to combat obesity. Theranostics. 13(9):3103-3116. doi: 10.7150/thno.81893 (#STA-500).
  4. Peng, Y.J. et al. (2023). Hypoxia sensing requires H2S-dependent persulfidation of olfactory receptor 78. Sci Adv. 9(27):eadf3026. doi: 10.1126/sciadv.adf3026 (#STA-501).
  5. Kotlarczyk, A.M. et al. (2023). How Is Arachidonic Acid Metabolism in the Uterus Connected with the Immune Status of Red Deer Females (Cervus elaphus L.) in Different Reproductive Stages? Int J Mol Sci. 24(5):4771. doi: 10.3390/ijms24054771 (#STA-500).
  6. Athapaththu, A.M.G.K. et al. (2023). Pinostrobin Suppresses the α-Melanocyte-Stimulating Hormone-Induced Melanogenic Signaling Pathway. Int J Mol Sci. 24(1):821. doi: 10.3390/ijms24010821 (#STA-500).
  7. Al-Ghafari, A. et al. (2022). Cyclic AMP and calcium signaling are involved in antipsychotic-induced diabetogenic effects in isolated pancreatic β cells of CD1 mice. Int J Health Sci (Qassim). 16(5):9-20 (#STA-500).
  8. Lee, D. & PyoIn, Y. (2021). Vitro Anti-Obesity Effects of Raw Garlic and Pickled Garlic. J Korean Med Obes Res. 21:69-79. doi: 10.15429/jkomor.2021.21.2.69 (#STA-500).
  9. Lee, S.J. et al. (2021). Anti-Obesity Effect of α-Cubebenol Isolated from Schisandra chinensis in 3T3-L1 Adipocytes. Biomolecules. 11(11):1650. doi: 10.3390/biom11111650 (#STA-500).
  10. Boby, N. et al. (2021). Protective Effect of Pyrus ussuriensis Maxim. Extract against Ethanol-Induced Gastritis in Rats. Antioxidants. 10(3):439. doi: 10.3390/antiox10030439 (#STA-500).
  11. Huang, J. et al. (2020). The odorant receptor OR2W3 on airway smooth muscle evokes bronchodilation via a cooperative chemosensory tradeoff between TMEM16A and CFTR. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.2003111117 (#STA-500).
  12. Ridzwan, N. et al. (2020). Pomegranate-derived anthocyanin regulates MORs-cAMP/CREB-BDNF pathways in opioid-dependent models and improves cognitive impairments. J Ayurveda Integr Med. S0975-9476(18)30683-1. doi: 10.1016/j.jaim.2019.12.001 (#STA-500).
  13. Zhong, Y. et al. (2020). Berberine Attenuates Hyperglycemia by Inhibiting the Hepatic Glucagon Pathway in Diabetic Mice. Oxid Med Cell Longev. 2020:6210526. doi: 10.1155/2020/6210526 (#STA-500).
  14. Molagoda, I.M.N. et al. (2020). Ethanolic Extract of Hippocampus abdominalis Exerts Anti-Melanogenic Effects in B16F10 Melanoma Cells and Zebrafish Larvae by Activating the ERK Signaling Pathway. Cosmetics. 7(1):1-14. doi: 10.3390/cosmetics7010001 (#STA-500).
  15. Wójcik-Pszczoła, K. et al. (2019). Novel phosphodiesterases inhibitors from the group of purine-2,6-dione derivatives as potent modulators of airway smooth muscle cell remodelling. Eur J Pharmacol. doi: 10.1016/j.ejphar.2019.172779 (#STA-500).
  16. Mystek, P. et al. (2019). Gγ and Gα Identity Dictate a G-Protein Heterotrimer Plasma Membrane Targeting. Cells. 8(10). pii: E1246. doi: 10.3390/cells8101246 (#STA-500).
  17. Meng, W. et al. (2019). Rheb promotes brown fat thermogenesis by Notch-dependent activation of the PKA signaling pathway. J Mol Cell Biol. pii: mjz056. doi: 10.1093/jmcb/mjz056 (#STA-500).
  18. Chen, C. et al. (2019). 5'-Iodotubercidin represses insulinoma-associated-1 expression, decreases cAMP levels, and suppresses human neuroblastoma cell growth. J Biol Chem. 294(14):5456-5465. doi: 10.1074/jbc.RA118.006761 (#STA-500).
  19. d'Uscio, L.V. et al. (2019). Vascular phenotype of amyloid precursor protein-deficient mice. Am J Physiol Heart Circ Physiol. doi: 10.1152/ajpheart.00539.2018 (#STA-500).
  20. Gogola, J. et al. (2019). Persistent endocrine-disrupting chemicals found in human follicular fluid stimulate the proliferation of granulosa tumor spheroids via GPR30 and IGF1R but not via the classic estrogen receptors. Chemosphere. 217:100-110. doi: 10.1016/j.chemosphere.2018.11.018 (#STA-500).
  21. Jiang, X. et al. (2019). Pinoresinol promotes MC3T3‑E1 cell proliferation and differentiation via the cyclic AMP/protein kinase A signaling pathway. Molecular Medicine Reports. doi: 10.3892/mmr.2019.10468 (#STA-501).
  22. Mamat, N. et al. (2018). Potential anti-vitiligo properties of cynarine extracted from Vernonia anthelmintica (L.) Willd. Int J Mol Med. 42(5):2665-2675. doi: 10.3892/ijmm.2018.3861 (#STA-500).
  23. Wang, W. et al. (2018). Decreased cAMP Level and Decreased Downregulation of β1-Adrenoceptor Expression in Therapeutic Hypothermia-Resuscitated Myocardium Are Associated With Improved Post-Resuscitation Myocardial Function. J Am Heart Assoc. 7(6). pii: e006573. doi: 10.1161/JAHA.117.006573 (#STA-500).
  24. Niewiarowska-Sendo, A., et al. (2017). Bradykinin B2 and dopamine D2 receptors form a functional dimer. Biochim Biophys Acta. 1864(10):1855-1866. doi: 10.1016/j.bbamcr.2017.07.012 (#STA-501).
  25. Meena, N. P. and Kimmel, A.R. (2017). Chemotactic network responses to live bacteria show independence of phagocytosis from chemo-receptor sensing. Elife 6. doi: 10.7554/eLife.24627 (#STA-501).
  26. Simanjuntak Y, et al. (2017). Japanese Encephalitis Virus Exploits Dopamine D2 Receptor-phospholipase C to Target Dopaminergic Human Neuronal Cells. Front Microbiol. 8:651. doi: 10.3389/fmicb.2017.00651 (#STA-501).
  27. Israeli, M. et al. (2016). A simple luminescent adenylate-cyclase functional assay for evaluation of Bacillus anthracis edema factor activity. Toxins. 8:243 (#STA-501).
  28. Yong, Y. et al. (2014). Electromagnetic Fields Promote Osteogenesis of Rat Mesenchymal Stem Cells Through the PKA and ERK1/2 Pathways.J Tissue Eng Regen Med.doi: 10.1002/term.1864 (#STA-501).
  29. Jones, A. et al. (2014). Human Macrophage SCN5A Activates an Innate Immune Signaling Pathway for Antiviral Host Defense. J Biol Chem. 289:35326-35340 (#STA-501).
  30. Liu, L. et al. (2014).  PKCβII acts downstream of chemoattractant receptors and mTORC2 to regulate cAMP production and myosin II activity in neutrophils. Mol Biol Cell. 25:1446-1457 (#STA-501).