Rho Activation Assays

Rho Activation Assays
  • Safe non-radioactive assay format
  • Colored agarose beads allow visual check
  • Fast results: 1 hour plus electrophoresis/blotting time
  • Compatible with human, mouse, and rat samples

 

Frequently Asked Questions about this product

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

RhoA Activation Assay
Catalog Number
STA-403-A
Size
20 assays
Detection
Immunoblot
Manual/Data Sheet Download
SDS Download
Price
$625.00
RhoA/Rac1/Cdc42 Activation Assay Combo Kit
Catalog Number
STA-405
Size
3 x 10 assays
Detection
Immunoblot
Manual/Data Sheet Download
SDS Download
Price
$920.00
RhoB Activation Assay
Catalog Number
STA-403-B
Size
20 assays
Detection
Immunoblot
Manual/Data Sheet Download
SDS Download
Price
$625.00
RhoC Activation Assay
Catalog Number
STA-403-C
Size
20 assays
Detection
Immunoblot
Manual/Data Sheet Download
SDS Download
Price
$625.00
RhoA Activation Assay Kit, Trial Size
Catalog Number
STA-403-A-T
Size
5 assays
Detection
Immunoblot
Manual/Data Sheet Download
SDS Download
Price
$310.00
Product Details

Our Rho Activation Assays use visible agarose beads to selectively precipitate the active form of RhoA, RhoB or RhoC. The precipitated small GTPase is then detected by Western blot using a RhoA-, RhoB- or RhoC-specific antibody included in the kit.

If you are also studying Rac1 and/or Cdc42, you may consider our economical combination kit.

Small GTPase Activation Assay Principle

Recent Product Citations
  1. Buonpane, C. et al. (2020). ROCK1 Inhibitor Stabilizes E-cadherin and Improves Barrier Function in Experimental Necrotizing Enterocolitis. Am J Physiol Gastrointest Liver Physiol. doi: 10.1152/ajpgi.00195.2019 (#STA-403-A).
  2. Phung, B. et al. (2019). The X-Linked DDX3X RNA Helicase Dictates Translation Reprogramming and Metastasis in Melanoma. Cell Rep. 27(12):3573-3586.e7. doi: 10.1016/j.celrep.2019.05.069 (#STA-403-A).
  3. Yoon, S. et al. (2019). EPHB6 mutation induces cell adhesion-mediated paclitaxel resistance via EPHA2 and CDH11 expression. Exp Mol Med. 51(6):61. doi: 10.1038/s12276-019-0261-z (#STA-403-A).
  4. Gao, S. et al. (2019). Histidine-rich glycoprotein ameliorates endothelial barrier dysfunction through regulation of NF-κB and MAPK signal pathway. Br J Pharmacol. doi: 10.1111/bph.14711 (#STA-403-A).
  5. Kang, M. et al. (2019). Roles of CD133 in microvesicle formation and oncoprotein trafficking in colon cancer. FASEB J. 33(3):4248-4260. doi: 10.1096/fj.201802018R (#STA-403-A).
  6. El Atat, O. et al. (2019). RHOG Activates RAC1 through CDC42 Leading to Tube Formation in Vascular Endothelial Cells. Cells. 8(2). pii: E171. doi: 10.3390/cells8020171 (#STA-405).
  7. Kim, D. et al. (2019). Lysophosphatidic acid increases mesangial cell proliferation in models of diabetic nephropathy via Rac1/MAPK/KLF5 signaling. Exp Mol Med. 51(2):18. doi: 10.1038/s12276-019-0217-3 (#STA-405).
  8. Soliman, M. et al. (2018). Rotavirus-Induced Early Activation of the RhoA/ROCK/MLC Signaling Pathway Mediates the Disruption of Tight Junctions in Polarized MDCK Cells. Sci Rep. 8(1):13931. doi: 10.1038/s41598-018-32352-y (#STA-403-A).
  9. Sorrentino, S. et al. (2018). Hindlimb Ischemia Impairs Endothelial Recovery and Increases Neointimal Proliferation in the Carotid Artery. Sci Rep. 8(1):761. doi: 10.1038/s41598-017-19136-6 (#STA-403-A).
  10. Huang, X. et al. (2018). RhoA-stimulated intra-capillary morphology switch facilitates the arrest of individual circulating tumor cells. Int J Cancer. 142(10):2094-2105. doi: 10.1002/ijc.31238 (#STA-403-A).
  11. Zhang, F. et al. (2018). GAP43, a novel metastasis promoter in non-small cell lung cancer. J Transl Med. 16(1):310. doi: 10.1186/s12967-018-1682-5 (#STA-405).
  12. Chen, Z.S. et al. (2018). Planar cell polarity gene Fuz triggers apoptosis in neurodegenerative disease models. EMBO Rep. 19(9). pii: e45409. doi: 10.15252/embr.201745409 (#STA-405).
  13. Samuelsson, M. et al. (2017). RhoB controls the Rab11-mediated recycling and surface reappearance of LFA-1 in migrating T lymphocytes. Sci Signal. 10(509). pii: eaai8629. doi: 10.1126/scisignal.aai8629 (#STA-403-B).
  14. Schiapparelli, P. et al. (2017). NKCC1 regulates migration ability of glioblastoma cells by modulation of actin dynamics and interacting with cofilin. EBioMedicine. doi: 10.1016/j.ebiom.2017.06.020 (#STA-405).
  15. Ye, Y. et al. (2016). Down-regulation of 14-3-3 Zeta Inhibits TGF-β1-Induced Actomyosin Contraction in Human Trabecular Meshwork Cells Through RhoA Signaling Pathway. Invest Ophthalmol Vis Sci. doi: 10.1167/iovs.15-17438 (#STA-403-A).
  16. Ma, J. H. et al. (2016). The role of IRE-XBP1 pathway in regulation of retinal pigment epithelium tight junctionsXBP1 regulates the RPE tight junctions. Invest Ophthalmol Vis Sci57:5244-5252 (#STA-403-A).
  17. Kim, J. M. et al. (2016). Distinctive and selective route of PI3K/PKCα-PKCδ/RhoA-Rac1 signaling in osteoclastic cell migration. Mol Cell Endocrinol. doi:10.1016/j.mce.2016.08.042 (#STA-403-A).
  18. Cui, J. et al. (2016). Epigenetic silencing of TPM2 contributes to colorectal cancer progression upon RhoA activation. Tumor Biol. doi:10.1007/s13277-016-5103-1 (#STA-403-A).
  19. Ye, Y. et al. (2016). Down-regulation of 14-3-3 Zeta inhibits TGF-β1–induced actomyosin contraction in human trabecular meshwork cells through rhoa signaling pathway14-3-3 zeta regulates actomyosin contraction in TM cells. Invest Ophthalmol Vis Sci. 57:719-730 (#STA-403-A).
  20. Han, J. et al. (2016). RhoB/ROCK mediates oxygen–glucose deprivation-stimulated syncytiotrophoblast microparticle shedding in preeclampsia. Cell Tissue Res. doi:10.1007/s00441-016-2436-4 (#STA-403-B).
  21. Prudent, J. et al. (2016). Mitochondrial Ca2+ uptake controls actin cytoskeleton dynamics during cell migration. Sci. Rep. 6:36570 (#STA-405).
  22. Shen, J. et al. (2016). NMDA receptors participate in the progression of diabetic kidney disease by decreasing Cdc42-GTP activation in podocytes. J Pathol. doi:10.1002/path.4764 (#STA-405).
  23. Le, L. T. et al. (2016). Loss of miR-203 regulates cell shape and matrix adhesion through ROBO1/Rac/FAK in response to stiffness. J Cell Biol. 212:707-719 (#STA-405).
  24. Gayle, S. et al. (2015). piggyBac insertional mutagenesis screen identifies a role for nuclear RhoA in human ES cell differentiation. Stem cell Reports. doi:10.1016/j.stemcr.2015.03.001 (#STA-403-A).
  25. Namachivayam, K. et al. (2015). All-Trans Retinoic Acid Induces TGF-β2 in Intestinal Epithelial Cells via RhoA- and p38α MAPK-Mediated Activation of the Transcription Factor ATF2. PLoS One. 10(7):e0134003. doi: 10.1371/journal.pone.0134003 (#STA-405).
  26. Giralt, A. et al. (2015). Pyk2 is essential for astrocytes mobility following brain lesion. Glia. doi: 10.1002/glia.22952 (#STA-405).
  27. Mori, H. et al. (2015). Smad3 deficiency leads to mandibular condyle degradation via the sphingosine 1-phosphate (S1P)/S1P 3 signaling axis. Am J Pathol.  doi:10.1016/j.ajpath.2015.06.015 (#STA-405).
  28. Toyoda, K. et al. (2015). Grp78 is critical for amelogenin-induced cell migration in a multipotent clonal human periodontal ligament cell line. J Cell Physiol. doi: 10.1002/jcp.25087 (#STA-405).
  29. Barbati, C. et al. (2015). THU0381 autoantibodies specific to D4GDI isolated from SLE patients “unlock” RHO small GTPases and affect actin remodeling in T lymphocytes. Ann Rheum Dis. 74:334-334 (#STA-405).
  30. Barbati, C. et al. (2015). Autoantibodies Specific to D4GDI Modulate Rho GTPase Mediated Cytoskeleton Remodeling and Induce Autophagy in T Lymphocytes. J Autoimmun. doi:10.1016/j.jaut.2015.01.005 (#STA-405).
  31. Ichijo, S. et al. (2014). Activation of the RhoB signaling pathway by thyroid hormone receptor β in thyroid cancer cells. PLoS One. 9:e116252 (#STA-403-B).