HNE Adduct Competitive ELISA

HNE Adduct Competitive ELISA
  • Measure HNE protein adduct levels in a variety of samples including cell and tissue lysates, serum, plasma, and purified proteins
  • HNE-BSA standard included

 

Frequently Asked Questions about this product

General FAQs about Oxidative Stress

Video: Color Development in an ELISA

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

OxiSelect™ HNE Adduct Competitive ELISA Kit
Catalog Number
STA-838
Size
96 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$685.00
OxiSelect™ HNE Adduct Competitive ELISA Kit
Catalog Number
STA-838-5
Size
5 x 96 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$2,950.00
OxiSelect™ HNE Adduct Competitive ELISA Kit, Trial Size
Catalog Number
STA-838-T
Size
32 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$335.00
Product Details

4-hydroxynonenal (4-HNE or HNE) is a well known by-product of lipid peroxidation and is widely accepted as a stable marker for oxidative stress. Our OxiSelect™ HNE Adduct Competitive ELISA Kit measures the formation of HNE adducts to any protein residue using a competitive ELISA format.

Recent Product Citations
  1. Sánchez-Carro, Y. et al. (2022). Importance of immunometabolic markers for the classification of patients with major depressive disorder using machine learning. Prog Neuropsychopharmacol Biol Psychiatry. doi: 10.1016/j.pnpbp.2022.110674.
  2. Rajesh, M. et al. (2022). Cannabinoid receptor 2 activation alleviates diabetes-induced cardiac dysfunction, inflammation, oxidative stress, and fibrosis. Geroscience. doi: 10.1007/s11357-022-00565-9.
  3. Nowak, B. et al. (2022). The Effect of Inhaled Air Particulate Matter SRM 1648a on the Development of Mild Collagen-Induced Arthritis in DBA/J Mice. Arch Immunol Ther Exp (Warsz). 70(1):17. doi: 10.1007/s00005-022-00654-9.
  4. Dettleff, P. et al. (2022). High-Temperature Stress Effect on the Red Cusk-Eel (Geypterus chilensis) Liver: Transcriptional Modulation and Oxidative Stress Damage. Biology. 11(7):990. doi: 10.3390/biology11070990.
  5. Maciejczyk, M. et al. (2022). α-Lipoic Acid Strengthens the Antioxidant Barrier and Reduces Oxidative, Nitrosative, and Glycative Damage, as well as Inhibits Inflammation and Apoptosis in the Hypothalamus but Not in the Cerebral Cortex of Insulin-Resistant Rats. Oxid Med Cell Longev. doi: 10.1155/2022/7450514.
  6. Maciejczyk, M. et al. (2022). Oxidation, Glycation, and Carbamylation of Salivary Biomolecules in Healthy Children, Adults, and the Elderly: Can Saliva Be Used in the Assessment of Aging? J Inflamm Res. 15:2051-2073. doi: 10.2147/JIR.S356029.
  7. Couchie, D. et al. (2022). Circadian rhythmicity of the thioredoxin system in cultured murine peritoneal macrophages. Biochimie. 198:76-85. doi: 10.1016/j.biochi.2022.03.006.
  8. Giri, T. et al. (2022). Labor induction with oxytocin in pregnant rats is not associated with oxidative stress in the fetal brain. Sci Rep. 12(1):3143. doi: 10.1038/s41598-022-07236-x.
  9. Skesters, A. et al. (2022). Selenium, selenoprotein P, and oxidative stress levels in SARS-CoV-2 patients during illness and recovery. Inflammopharmacology. doi: 10.1007/s10787-022-00925-z.
  10. Yang, L. et al. (2022). Ketogenic diet and chemotherapy combine to disrupt pancreatic cancer metabolism and growth. Med. 3(2):119-136. doi: 10.1016/j.medj.2021.12.008.
  11. Morel, J.D. et al. (2022). The mouse metallomic landscape of aging and metabolism. Nat Commun. 13(1):607. doi: 10.1038/s41467-022-28060-x.
  12. Ketema, R.M. et al. (2022). Phthalates mixture on allergies and oxidative stress biomarkers among children: The Hokkaido study. Environ Int. 160:107083. doi: 10.1016/j.envint.2022.107083.
  13. Sommerfeld-Klatta, K. et al. (2022). Oxidative stress and biochemical indicators in blood of patients addicted to alcohol treated for acute ethylene glycol poisoning. Hum Exp Toxicol. 41:9603271211061502. doi: 10.1177/09603271211061502.
  14. Sánchez-Carro, Y. et al. (2021). Relationship between immunometabolic status and cognitive performance among major depression disorder patients. Psychoneuroendocrinology. 137:105631. doi: 10.1016/j.psyneuen.2021.105631.
  15. Xu, Q. et al. (2021). The flavonoid procyanidin C1 has senotherapeutic activity and increases lifespan in mice. Nat Metab. doi: 10.1038/s42255-021-00491-8.
  16. Ormiston, K. et al. (2021). Effects of plant-based versus marine-based omega-3 fatty acids and sucrose on brain and liver fatty acids in a mouse model of chemotherapy. Nutr Neurosci. doi: 10.1080/1028415X.2021.1998296.
  17. Guillén, M.I. et al. (2021). Role of peroxiredoxin 6 in the chondroprotective effects of microvesicles from human adipose tissue-derived mesenchymal stem cells. J Orthop Translat. doi: 10.1016/j.jot.2021.08.003.
  18. Maciejczyk, M. et al. (2021). Salivary Redox Biomarkers in Insulin Resistance: Preclinical Studies in an Animal Model. Oxid Med Cell Longev. 2021:3734252. doi: 10.1155/2021/3734252.
  19. Dalenogare, D.P. et al. (2021). Periorbital Nociception in a Progressive Multiple Sclerosis Mouse Model Is Dependent on TRPA1 Channel Activation. Pharmaceuticals (Basel). 14(8):831. doi: 10.3390/ph14080831.
  20. Yousefzadeh, M.J. et al. (2021). An aged immune system drives senescence and ageing of solid organs. Nature. doi: 10.1038/s41586-021-03547-7.
  21. Zhu, X. et al. (2021). ADAM10 suppresses demyelination and reduces seizure susceptibility in cuprizone-induced demyelination model. Free Radic Biol Med. 171:26-41. doi: 10.1016/j.freeradbiomed.2021.05.001.
  22. Robinson, S.A. et al. (2021). Clothianidin alters leukocyte profiles and elevates measures of oxidative stress in tadpoles of the amphibian, Rana pipiens. Environ. Pollut. doi: 10.1016/j.envpol.2021.117149.
  23. Nessel, I. et al. (2021). Effects of storage practices on long-chain polyunsaturated fatty acids and lipid peroxidation of preterm formula milk. J Hum Nutr Diet. doi: 10.1111/jhn.12858.
  24. Cao, Y. et al. (2021). Selective Ferroptosis Inhibitor Liproxstatin-1 Attenuates Neurological Deficits and Neuroinflammation After Subarachnoid Hemorrhage. Neurosci Bull. doi: 10.1007/s12264-020-00620-5.
  25. Rubinstein, L. et al. (2021). Overexpression of catalase in mitochondria mitigates changes in hippocampal cytokine expression following simulated microgravity and isolation. NPJ Microgravity. 7(1):24. doi: 10.1038/s41526-021-00152-w.
  26. Xue, Z. et al. (2021). Isorhapontigenin ameliorates cerebral ischemia/reperfusion injury via modulating Kinase Cε/Nrf2/HO-1 signaling pathway. Brain Behav. doi: 10.1002/brb3.2143.
  27. Schwank-Xu, C. et al. (2021). L-Carnosine Stimulation of Coenzyme Q10 Biosynthesis Promotes Improved Mitochondrial Function and Decreases Hepatic Steatosis in Diabetic Conditions. Antioxidants (Basel). 10(5):793. doi: 10.3390/antiox10050793.
  28. Jiang, J. et al. (2021). Impact of intrauterine fetal resuscitation with oxygen on oxidative stress in the developing rat brain. Sci Rep. 11(1):9798. doi: 10.1038/s41598-021-89299-w.
  29. Ohnishi, Y. et al. (2021). Rostro-caudal different energy metabolism leading to differences in degeneration in spinal cord injury. Brain Commun. doi: 10.1093/braincomms/fcab058.
  30. Hogarth, K. et al. (2021). Singular and short-term anesthesia exposure in the developing brain induces persistent neuronal changes consistent with chronic neurodegenerative disease. Sci Rep. 11(1):5673. doi: 10.1038/s41598-021-85125-5.
  31. Dietrich-Muszalska, A. et al. (2021). Comparative Study of the Effects of Atypical Antipsychotic Drugs on Plasma and Urine Biomarkers of Oxidative Stress in Schizophrenic Patients. Neuropsychiatr Dis Treat. 17:555-565. doi: 10.2147/NDT.S283395.
  32. Ohira, H. et al. (2021). Alteration of oxidative-stress and related marker levels in mouse colonic tissues and fecal microbiota structures with chronic ethanol administration: Implications for the pathogenesis of ethanol-related colorectal cancer. PLoS One. 16(2):e0246580. doi: 10.1371/journal.pone.0246580.