Lipoprotein Lipase (LPL) Activity Assay

Lipoprotein Lipase (LPL) Activity Assay
  • Quantitatively measures LPL activity in plasma, serum, and lysates in a 96-well microtiter plate format, but can also be used to detect endothelial and hepatic lipase activity
  • Simple, fluorometric assay with a sensitivity limit of ~1 mUnits/mL

 

Frequently Asked Questions about this product

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

Lipoprotein Lipase (LPL) Activity Assay Kit (Fluorometric)
Catalog Number
STA-610
Size
100 assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$430.00
Product Details

The Lipoprotein Lipase (LPL) Activity Assay Kit is a simple, fluorometric assay that quantitatively measures LPL activity in plasma, serum, and lysates in a 96-well microtiter plate format.  Each kit provides sufficient reagents to perform up to 100 assays, including blanks, LPL standards, and unknown samples.  The kit contains a LPL Standard and has a detection sensitivity limit of ~1 mUnits/mL (see Kit Components section of the product manual for unit definition). Besides LPL, this assay can also be used to detect endothelial and hepatic lipase activity. 

Recent Product Citations
  1. Plengpanich, W. et al. (2020). Genetic and functional studies of the LMF1 gene in Thai patients with severe hypertriglyceridemia. Mol Genet Metab Rep. 23:100576. doi: 10.1016/j.ymgmr.2020.100576.
  2. Meng, X. et al. (2020). MicroRNA-205-5p Promotes Unstable Atherosclerotic Plaque Formation In Vivo. Cardiovasc Drugs Ther. doi: 10.1007/s10557-020-06935-9.
  3. El Hage, R. et al. (2020). Supplementation of a propionate-producing consortium improves markers of insulin resistance in an in vitro model of gut-liver axis. Am J Physiol Endocrinol Metab. doi: 10.1152/ajpendo.00523.2019.
  4. Han, P. et al. (2020). Identification and functional characterization of mutations in LPL gene causing severe hypertriglyceridaemia and acute pancreatitis. J Cell Mol Med. doi: 10.1111/jcmm.14768.
  5. Paolella, L. M. et al. (2019). mTORC1 restrains adipocyte lipolysis to prevent systemic hyperlipidemia. Mol Metab. doi:10.1016/j.molmet.2019.12.003.
  6. Okuda, T. (2019). A low-carbohydrate ketogenic diet induces the expression of very-low-density lipoprotein receptor in liver and affects its associated metabolic abnormalities. NPJ Sci Food. 3:25. doi: 10.1038/s41538-019-0058-4.
  7. Klingel, S.L. et al. (2019). EPA and DHA have divergent effects on serum triglycerides and lipogenesis, but similar effects on lipoprotein lipase activity: a randomized controlled trial. Am J Clin Nutr. pii: nqz234. doi: 10.1093/ajcn/nqz234.
  8. Swapna, K. et al. (2019). Effects of asiatic acid, an active constituent in Centella asiatica (L.): restorative perspectives of streptozotocin-nicotinamide induced changes on lipid profile and lipid metabolic enzymes in diabetic rats. Comp Clin Pathol. doi: 10.1007/s00580-019-02955-6.
  9. Sugahara, S. et al. (2019). Protein O-GlcNAcylation Is Essential for the Maintenance of Renal Energy Homeostasis and Function via Lipolysis during Fasting and Diabetes. J Am Soc Nephrol. pii: ASN.2018090950. doi: 10.1681/ASN.2018090950.
  10. Vijayaraj, P. et al. (2019). Cyanidin and cyanidin-3-glucoside derived from Vigna unguiculata act as noncompetitive inhibitors of pancreatic lipase. Journal of Food Biochemistry. e12774. doi:10.1111/jfbc.12774.
  11. Vatner, D.F. et al. (2018). Angptl8 antisense oligonucleotide improves adipose lipid metabolism and prevents diet-induced NAFLD and hepatic insulin resistance in rodents. Diabetologia. 61(6):1435-1446. doi: 10.1007/s00125-018-4579-1.
  12. Péterfy, M. et al. (2018). Characterization of two novel pathogenic variants at compound heterozygous status in lipase maturation factor 1 gene causing severe hypertriglyceridemia. J Clin Lipidol. 12(5):1253-1259. doi: 10.1016/j.jacl.2018.07.008.
  13. Sithu, S.D. et al. (2017). Atherogenesis and metabolic dysregulation in LDL receptor–knockout rats. JCI Insight. doi: 10.1172/jci.insight.86442.
  14. Mao, H. et al. (2017). Endothelial LRP1 regulates metabolic responses by acting as a co-activator of PPARγ. Nat Commun. 8:14960. doi: 10.1038/ncomms14960.
  15. An, Y.A. et al. (2017). Angiopoietin-2 in white adipose tissue improves metabolic homeostasis through enhanced angiogenesis. Elife. 6. pii: e24071. doi: 10.7554/eLife.24071.
  16. Aslan, İ. et al. (2016). Decreased eicosapentaenoic acid levels in acne vulgaris reveals the presence of a proinflammatory state. Prostaglandins Other Lipid Mediat. doi: 10.1016/j.prostaglandins.2016.12.001
  17. Liu, Z. et al. (2016). Extensive metabolic disorders are present in APC min tumorigenesis mice. Mol Cell Endocrinol. doi:10.1016/j.mce.2016.03.004.
  18. Sun, X. et al. (2015). Insulin dissociates the effects of Liver X Receptor on lipogenesis, endoplasmic reticulum stress and inflammation. J Biol Chem. doi:10.1074/jbc.M115.668269.
  19. Downing, L. E. et al. (2015). A grape seed procyanidin extract ameliorates fructose-induced hypertriglyceridemia in rats via enhanced fecal bile acid and cholesterol excretion and inhibition of hepatic lipogenesis. PLoS One. 10:e0140267.
  20. Brahma Naidu, P. et al. (2015). Ameliorative potential of gingerol: Promising modulation of inflammatory factors and lipid marker enzymes expressions in HFD induced obesity in rats. Mol Cell Endocrinol. doi:10.1016/j.mce.2015.10.007.
  21. Qiao, L.et al. (2015). Maternal high fat feeding increases placenta lipoprotein lipase activity by reducing Sirt1 expression in mice. Diabetes. doi:10.2337/db14-1627.
  22. Kim, H. K. et al. (2015). Regulation of energy balance by the hypothalamic lipoprotein lipase regulator Angptl3. Diabetes. 64:1142-1153.
  23. Camporez, J. P. et al. (2015). ApoA5 knockdown improves whole-body insulin sensitivity in high-fat-fed mice by reducing ectopic lipid content. J Lipid Res. 56:526-536.
  24. Kim, H. Y. et al. (2015). Urine and serum metabolite profiling of rats fed a high-fat diet and the anti-obesity effects of caffeine consumption. Molecules. 20:3107-3128.
  25. Kassner, U. et al. (2015). Severe hypertriglyceridemia in a patient heterozygous for a lipoprotein lipase gene allele with two novel missense variants. Eur J Hum Genet.doi:10.1038/ejhg.2014.295.
  26. Dib, L. et al. (2014). LXRα Fuels Fatty Acid-Stimulated Oxygen Consumption in White Adipocytes. J. Lipid. Res. 55:247-257.
  27. Navab, M. et al. (2013). Transgenic 6F Tomatoes Act on the Small Intestine to Prevent Systemic Inflammation and Dyslipidemia Caused by Western Diet and Intestinally Derived Lysophosphatidic Acid. J. Lipid Res. 54:3403-3418.