Nitrotyrosine ELISA Kit

Nitrotyrosine ELISA Kit
  • Sensitive detection of 3-Nitrotyrosine as low as 10 nM
  • Suitable for use with cell lysates, serum, plasma and purified proteins
  • Nitrated BSA provided as a standard

 

Video: Color Development in an ELISA

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

OxiSelect™ Nitrotyrosine ELISA Kit
Catalog Number
STA-305
Size
96 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$660.00
OxiSelect™ Nitrotyrosine ELISA Kit
Catalog Number
STA-305-5
Size
5 x 96 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$2,830.00
OxiSelect™ Nitrotyrosine ELISA Kit, Trial Size
Catalog Number
STA-305-T
Size
32 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$325.00
Product Details

Nitric oxide influences a variety of biological processes including cell proliferation, apoptosis, neurotoxicity and extracellular matrix remodeling. Nitric oxide reacts with superoxide to form peroxynitrite, which in turn nitrates tyrosine residues in proteins. Nitrotyrosine therefore serves as a marker for peroxynitrite action in a variety of disease states and in conditions of cellular damage and oxidative stress.

Our OxiSelect™ Nitrotyrosine ELISA Kit provides a sensitive method to measure the formation of 3-nitrotyrosine in proteins.

Formation of 3-Nitrotyrosine During Oxidative Stress. An increase in the presence of nitrotyrosine is correlated with an increase in the presence of nitric oxide (NO).

Protein Nitration by Tetranitromethane using the OxiSelect™ Nitrotyrosine ELISA Kit. STO (MEF) cells were lysed in 25 mM HEPES, pH 7.5, 150 mM NaCl, 1% NP-40, 10 mM MgCl2, 1 mM EDTA, 2% glycerol. The cell lysate was nitrated with tetranitromethane. The protein 3-nitrotyrosine levels were measured as described in the assay protocol.

Recent Product Citations
  1. Casós, K. et al. (2020). Determination of Redox Status in Serum. Methods Mol Biol. 2110:115-128. doi: 10.1007/978-1-0716-0255-3_8.
  2. Ruottinen, M. et al. (2020). The Rectus Sheath Block (RSB) Analgesia Following Laparotomy Could Affect Malonidialdehyde (MDA) Concentrations in Benign Disease and Cancer. Anticancer Res. 40(1):253-259. doi: 10.21873/anticanres.13947.
  3. Menegas, S. et al. (2020). Efficacy of folic acid as an adjunct to lithium therapy on manic-like behaviors, oxidative stress and inflammatory parameters in an animal model of mania. Metab Brain Dis. doi: 10.1007/s11011-019-00503-3.
  4. Mikolka, P. et al. (2019). Effect of different dosages of dexamethasone therapy on lung function and inflammation in an early phase of acute respiratory distress syndrome model. Physiol Res. 68(Supplementum 3):S253-S263. doi: 10.33549/physiolres.934364.
  5. Balasubramanian, P. et al. (2019). Obesity-Induced Sympathoexcitation is Associated with Nrf2 Dysfunction in the Rostral VentroLateral Medulla. Am J Physiol Regul Integr Comp Physiol. doi: 10.1152/ajpregu.00206.2019.
  6. Streese, L. et al. (2019). Physical activity may drive healthy microvascular ageing via downregulation of p66Shc. Eur J Prev Cardiol. doi: 10.1177/2047487319880367.
  7. Chazarin, B. et al. (2019). Limited Oxidative Stress Favors Resistance to Skeletal Muscle Atrophy in Hibernating Brown Bears (Ursus Arctos). Antioxidants (Basel). 8(9). pii: E334. doi: 10.3390/antiox8090334.
  8. Suvakov, S. et al. (2019). Markers of Oxidative Stress and Endothelial Dysfunction Predict Haemodialysis Patients Survival. Am J Nephrol. doi: 10.1159/000501300.
  9. Jerotic, D. et al. (2019). Association of Nrf2, SOD2 and GPX1 Polymorphisms with Biomarkers of Oxidative Distress and Survival in End-Stage Renal Disease Patients. Toxins (Basel). 11(7). pii: E431. doi: 10.3390/toxins11070431.
  10. Simenauer, A. et al. (2019). Repression of Nrf2/ARE regulated antioxidant genes and dysregulation of the cellular redox environment by the HIV Transactivator of Transcription. Free Radic Biol Med. 141:244-252. doi: 10.1016/j.freeradbiomed.2019.06.015.
  11. Tucker, M.A. et al. (2019). Endothelial Dysfunction in Cystic Fibrosis: Role of Oxidative Stress. Oxidative Medicine and Cellular Longevity. 2019:1-8. doi: 10.1155/2019/1629638.
  12. Erlandsson, L. et al. (2019). Alpha-1 microglobulin as a potential therapeutic candidate for treatment of hypertension and oxidative stress in the STOX1 preeclampsia mouse model. Sci Rep. 9(1):8561. doi: 10.1038/s41598-019-44639-9.
  13. Wan, P. et al. (2019). LncRNA H19 initiates microglial pyroptosis and neuronal death in retinal ischemia/reperfusion injury. Cell Death Differ. doi: 10.1038/s41418-019-0351-4.
  14. Tarantini, S. et al. (2019). Nicotinamide mononucleotide (NMN) supplementation rescues cerebromicrovascular endothelial function and neurovascular coupling responses and improves cognitive function in aged mice. Redox Biol. 24:101192. doi: 10.1016/j.redox.2019.101192.
  15. Dal-Pont, G.C. et al. (2019). Tamoxifen has an anti-manic effect but not protect the brain against oxidative stress in an animal model of mania induced by ouabain. J Psychiatr Res. 113:181-189. doi: 10.1016/j.jpsychires.2019.03.020.
  16. Menegas, S. et al. (2019). Resveratrol protects the brain against oxidative damage in a dopaminergic animal model of mania. Metab Brain Dis. doi: 10.1007/s11011-019-00408-1.
  17. Kuosmanen, V. et al. (2019). Rectus Sheath Block (RSB) Analgesia Could Enhance Significantly the Patient Satisfaction Following Midline Laparotomy in Benign Disease and in Cancer: A Prospective Study With Special Reference to Nitrosative Stress Marker Nitrotyrosine (NT) Plasma Concentrations. Anticancer Res. 39(3):1383-1389. doi: 10.21873/anticanres.13252.
  18. Scordo, J.M. et al. (2019). The human lung mucosa drives differential Mycobacterium tuberculosis infection outcome in the alveolar epithelium. Mucosal Immunol. 12(3):795-804. doi: 10.1038/s41385-019-0156-2.
  19. Saimanen, I. et al. (2019). Nitrotyrosine (NT), a Nitrosative Stress Biomarker, Plasma Concentrations in Gallstone Disease and Cancer Patients. Anticancer Res. 39(2):809-814. doi: 10.21873/anticanres.13179.
  20. Ognik, K. et al. (2019). The effect of copper nanoparticles and copper (II) salt on redox reactions and epigenetic changes in a rat model. J Anim Physiol Anim Nutr (Berl). 103(2):675-686. doi: 10.1111/jpn.13025.
  21. Kosutova, P. et al. (2018). Reduction of lung inflammation, oxidative stress and apoptosis by the PDE4 inhibitor roflumilast in experimental model of acute lung injury. Physiol Res. 67(Supplementum 4):S645-S654.
  22. Grzesiak, M. et al. (2018). Oxidative Stress in Women Treated with Atosiban for Impending Preterm Birth. Oxid Med Cell Longev. 2018:3919106. doi: 10.1155/2018/3919106.
  23. Pavlov, D. et al. (2019). Neuroinflammation and aberrant hippocampal plasticity in a mouse model of emotional stress evoked by exposure to ultrasound of alternating frequencies. Prog Neuropsychopharmacol Biol Psychiatry. 90:104-116. doi: 10.1016/j.pnpbp.2018.11.014.
  24. Ognik, K. et al. (2018). The effect of manganese nanoparticles on performance, redox reactions and epigenetic changes in turkey tissues. Animal. 1-8. doi: 10.1017/S1751731118002653.
  25. Jelani, Q.U. et al. (2018). Effects of serial phlebotomy on vascular endothelial function: Results of a prospective double-blind randomized study. Cardiovasc Ther. 36(6):e12470. doi: 10.1111/1755-5922.12470.
  26. Chen, Y. et al. (2018). Biological markers of harm can be detected in mice exposed for two months to low doses of Third Hand Smoke under conditions that mimic human exposure. Food Chem Toxicol. 122:95-103. doi: 10.1016/j.fct.2018.09.048.
  27. McManus, M.J. et al. (2019). Mitochondrial DNA Variation Dictates Expressivity and Progression of Nuclear DNA Mutations Causing Cardiomyopathy. Cell Metab. 29(1):78-90.e5. doi: 10.1016/j.cmet.2018.08.002.
  28. Şakul, A. et al. (2018). A pyridoindole antioxidant SMe1EC2 regulates contractility, relaxation ability, cation channel activity, and protein-carbonyl modifications in the aorta of young and old rats with or without diabetes mellitus. Geroscience. 40(4):377-392. doi: 10.1007/s11357-018-0034-y.
  29. Dal-Pont, G.C. et al. (2018). Inhibition of GSK-3β on Behavioral Changes and Oxidative Stress in an Animal Model of Mania. Mol Neurobiol. doi: 10.1007/s12035-018-1226-2.
  30. Sumayao, R. Jr. et al. (2018). Inducible nitric oxide synthase inhibitor 1400W increases Na+ ,K+ -ATPase levels and activity and ameliorates mitochondrial dysfunction in Ctns null kidney proximal tubular epithelial cells. Clin Exp Pharmacol Physiol. 45(11):1149-1160. doi: 10.1111/1440-1681.12998.