Protein Carbonyl ELISA

Protein Carbonyl ELISA
  • Detect as little as 10 µg/mL in a standard microplate reader
  • No concentration or precipitation steps that contribute to sample loss
  • Suitable for plasma, serum, cell lysates or purified proteins

 

Frequently Asked Questions about this product

General FAQs about Oxidative Stress

Video: Color Development in an ELISA

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

OxiSelect™ Protein Carbonyl ELISA Kit
Catalog Number
STA-310
Size
96 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$685.00
OxiSelect™ Protein Carbonyl ELISA Kit
Catalog Number
STA-310-5
Size
5 x 96 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$2,950.00
Product Details

The most common products of protein oxidation in biological samples are the carbonyl derivatives of proline, lysine, arginine and threonine residues. Such derivatives are chemically stable and serve as markers for oxidative stress in most types of reactive oxygen species.

Our OxiSelect™ Protein Carbonyl ELISA Kit provides a rapid, efficient method for the detection of protein carbonyl residues. The ELISA format is perfect for higher throughput and high sensitivity; we have eliminated concentration and precipitation steps allowing greater sample retention.

Standard Curve Generated with the OxiSelect™ Protein Carbonyl ELISA Kit.

Recent Product Citations
  1. Li, S. et al. (2022). FBXW7 alleviates hyperglycemia-induced endothelial oxidative stress injury via ROS and PARP inhibition. Redox Biol. doi: 10.1016/j.redox.2022.102530.
  2. Duarte, M.E. & Kim, S.W. (2022). Phytobiotics from Oregano Extracts Enhance the Intestinal Health and Growth Performance of Pigs. Antioxidants (Basel). 11(10):2066. doi: 10.3390/antiox11102066.
  3. Gehrke, N. et al. (2022). Hepatic interleukin-1 receptor type 1 signalling regulates insulin sensitivity in the early phases of nonalcoholic fatty liver disease. Clin Transl Med. 12(9):e1048. doi: 10.1002/ctm2.1048.
  4. Li, W. et al. (2022). Circulating metals, leukocyte microRNAs and microRNA networks: A profiling and functional analysis in Chinese adults. Environ Int. doi: 10.1016/j.envint.2022.107511.
  5. Zych, M. et al. (2022). Two Bioactive Compounds, Rosmarinic Acid And Sinapic Acid, Do Not Affect The Depleted Glutathione Level In The Lenses Of Type 2 Diabetic Female Rats. Farmacia. 70(4):607-616. doi: 10.31925/farmacia.2022.4.5.
  6. Rajab, B.S. et al. (2022). Antioxidative and Anti-Inflammatory Protective Effects of β-Caryophyllene against Amikacin-Induced Nephrotoxicity in Rat by Regulating the Nrf2/AMPK/AKT and NF-κB/TGF-β/KIM-1 Molecular Pathways. Oxid Med Cell Longev. doi: 10.1155/2022/4212331.
  7. Deng, Z. et al. (2022). Soy protein concentrate replacing animal protein supplements and its impacts on intestinal immune status, intestinal oxidative stress status, nutrient digestibility, mucosa-associated microbiota, and growth performance of nursery pigs. J Anim Sci. doi: 10.1093/jas/skac255.
  8. Konieczka, P. et al. (2022). Increased arginine, lysine, and methionine levels can improve the performance, gut integrity and immune status of turkeys but the effect is interactive and depends on challenge conditions. Vet Res. 53(1):59. doi: 10.1186/s13567-022-01080-7.
  9. Dvorakova, M. et al. (2022). Assessment of the Potential Health Risk of Gold Nanoparticles Used in Nanomedicine. Oxid Med Cell Longev. doi: 10.1155/2022/4685642.
  10. Fernando, P.D.S.M. et al. (2022). Hesperidin Protects Human HaCaT Keratinocytes from Particulate Matter 2.5-Induced Apoptosis via the Inhibition of Oxidative Stress and Autophagy. Antioxidants (Basel). 11(7):1363. doi: 10.3390/antiox11071363.
  11. Dettleff, P. et al. (2022). High-Temperature Stress Effect on the Red Cusk-Eel (Geypterus chilensis) Liver: Transcriptional Modulation and Oxidative Stress Damage. Biology. 11(7):990. doi: 10.3390/biology11070990.
  12. Parapanov, R. et al. (2022). Experimental Models of Ischemic Lung Damage for the Study of Therapeutic Reconditioning During Ex Vivo Lung Perfusion. Transplant Direct. 8(7):e1337. doi: 10.1097/TXD.0000000000001337.
  13. Cao, N. et al. (2022). The Activated AMPK/mTORC2 Signaling Pathway Associated with Oxidative Stress in Seminal Plasma Contributes to Idiopathic Asthenozoospermia. Oxid Med Cell Longev. doi: 10.1155/2022/4240490.
  14. Tsunenaga, M. et al. (2022). Modulating effects of oral administration of Lycii Fructus extracts on UVB-induced skin erythema: A Randomized, placebo-controlled study. Biomed Rep. 17(1):62. doi: 10.3892/br.2022.1545.
  15. Graham, Z.A. et al. (2022). SS-31 does not prevent or reduce muscle atrophy 7 days after a 65 kdyne contusion spinal cord injury in young male mice. Physiol Rep. 10(10):e15266. doi: 10.14814/phy2.15266.
  16. Duarte, M.E. & Kim, S.W. (2022). Significance of Mucosa-Associated Microbiota and Its Impacts on Intestinal Health of Pigs Challenged with F18+ E. coli. Pathogens. 11(5):589. doi: 10.3390/pathogens11050589.
  17. Bokhary, T. et al. (2022). Salvadora persica extract attenuates cyclophosphamide-induced hepatorenal damage by modulating oxidative stress, inflammation, and apoptosis in rats. J Integr Med. doi: 10.1016/j.joim.2022.05.001.
  18. Holanda, D.M. & Kim, S.W. (2022). Impacts of weaning weights and mycotoxin challenges on jejunal mucosa-associated microbiota, intestinal and systemic health, and growth performance of nursery pigs. J Anim Sci Biotechnol. 13(1):43. doi: 10.1186/s40104-022-00691-6.
  19. Moita, V.H.C. et al. (2022). Functional roles of xylanase enhancing intestinal health and growth performance of nursery pigs by reducing the digesta viscosity and modulating the mucosa-associated microbiota in the jejunum. J Anim Sci. doi: 10.1093/jas/skac116.
  20. Borymska, W. et al. (2022). Silymarin from Milk Thistle Fruits Counteracts Selected Pathological Changes in the Lenses of Type 1 Diabetic Rats. Nutrients. 14(7):1450. doi: 10.3390/nu14071450.
  21. Rosa, R.H. et al. (2022). Intravitreal Administration of Stanniocalcin-1 Rescues Photoreceptor Degeneration with Reduced Oxidative Stress and Inflammation in a Porcine Model of Retinitis Pigmentosa. Am J Ophthalmol. doi: 10.1016/j.ajo.2022.03.014.
  22. Yang, L. et al. (2022). Non-invasive photobiomodulation treatment in an Alzheimer Disease-like transgenic rat model. Theranostics. 12(5):2205-2231. doi: 10.7150/thno.70756.
  23. Karamalakova, Y. et al. (2022). Pulmonary Protein Oxidation and Oxidative Stress Modulation by Lemna minor L. in Progressive Bleomycin-Induced Idiopathic Pulmonary Fibrosis. Antioxidants (Basel). 11(3):523. doi: 10.3390/antiox11030523.
  24. Giri, T. et al. (2022). Labor induction with oxytocin in pregnant rats is not associated with oxidative stress in the fetal brain. Sci Rep. 12(1):3143. doi: 10.1038/s41598-022-07236-x.
  25. Tungmunnithum, D. et al. (2022). Flavonoids from Sacred Lotus Stamen Extract Slows Chronological Aging in Yeast Model by Reducing Oxidative Stress and Maintaining Cellular Metabolism. Cells. 11(4):599. doi: 10.3390/cells11040599.
  26. Refaat, B. & El-Boshy, M. (2022). Protective antioxidative and anti-inflammatory actions of β-caryophyllene against sulfasalazine-induced nephrotoxicity in rat. Exp Biol Med (Maywood). doi: 10.1177/15353702211073804.
  27. Chung, H.K. et al. (2022). Antioxidant-Rich Dietary Intervention Improves Cardiometabolic Profiles and Arterial Stiffness in Elderly Koreans with Metabolic Syndrome. Yonsei Med J. 63(1):26-33. doi: 10.3349/ymj.2022.63.1.26.
  28. Lin, Q. et al. (2021). Magnolol additive improves growth performance of Linwu ducklings by modulating antioxidative status. PLoS One. 16(12):e0259896. doi: 10.1371/journal.pone.0259896.
  29. Kotake, H. et al. (2021). Endurance exercise training-attenuated diabetic kidney disease with muscle weakness in spontaneously diabetic Torii fatty rats. Kidney Blood Press Res. doi: 10.1159/000521464.
  30. Paterek, A. et al. (2021). Systemic iron deficiency does not affect the cardiac iron content and progression of heart failure. J Mol Cell Cardiol. doi: 10.1016/j.yjmcc.2021.06.005.