Platinum-E (Plat-E) Retroviral Packaging Cell Line

Platinum-E (Plat-E) Retroviral Packaging Cell Line
  • Higher retroviral yields: average titer 106 to 107 infectious units/mL with transient transfection
  • Longer stability: up to 4 months in the presence of drug selection
  • Produces ecotropic retrovirus, which can only readily infect mouse or rat cells

 

NOTE: Platinum Retroviral Packaging Cells are available for sale to academic, government and non-profit research laboratories. All other purchasers require a commercial license for all fields including research use. Please contact our Business Development department for license information.

 

Frequently Asked Questions about this product

General FAQs about Viral Gene Delivery

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

Platinum-E Retroviral Packaging Cell Line, Ecotropic
Catalog Number
RV-101
Size
1 vial
Detection
N/A
Manual/Data Sheet Download
SDS Download
Price
$770.00
Product Details

Conventional cells used for retrovirus packaging, such as those based on NIH3T3 cells, have limited stability and produce relatively low yields of retrovirus, mainly due to the poor expression of retroviral structure proteins (gag, pol and env) in the cells.

The Platinum Retroviral Packaging Cell Lines are based on the 293T cell line. They exhibit longer stability and produce higher yields of retroviral structure proteins. Plat-E cells contain gag, pol and env genes, allowing retroviral packaging with a single plasmid transfection.

High Retroviral Yields with Plat-E cells. NIH3T3 cells and mouse ProB Ba/F3 cells.

High Retroviral Yields with Plat-E cells. NIH3T3 cells were infected with GFP retrovirus supernatant produced in Plat-E cells after transfection with pMX-GFP.

Recent Product Citations
  1. Torcal Garcia, G. et al. (2023). Carm1-arginine methylation of the transcription factor C/EBPα regulates transdifferentiation velocity. Elife. 12:e83951. doi: 10.7554/eLife.83951.
  2. Zhang, Y. et al. (2023). Net39 protects muscle nuclei from mechanical stress during the pathogenesis of Emery-Dreifuss muscular dystrophy. J Clin Invest. 133(13):e163333. doi: 10.1172/JCI163333.
  3. Pachmayr, L.O. et al. (2023). Unbiased chemokine receptor screening reveals similar efficacy of lymph node- and tumor-targeted T cell immunotherapy. Cancer Immunol Immunother. doi: 10.1007/s00262-023-03472-w.
  4. Sato, S. et al. (2023). The circadian clock CRY1 regulates pluripotent stem cell identity and somatic cell reprogramming. Cell Rep. 42(6):112590. doi: 10.1016/j.celrep.2023.112590. 
  5. Salemme, V. et al. (2023). p140Cap inhibits β-Catenin in the breast cancer stem cell compartment instructing a protective anti-tumor immune response. Nat Commun. 14(1):2350. doi: 10.1038/s41467-023-37824-y.
  6. Tabata, K. et al. (2023). Monitoring and assessment of lysosomal membrane damage in cultured cells using the high-content imager. STAR Protoc. 4(2):102236. doi: 10.1016/j.xpro.2023.102236.
  7. Jin, J. et al. (2023). CISH impairs lysosomal function in activated T cells resulting in mitochondrial DNA release and inflammaging. Nat Aging. 3(5):600-616. doi: 10.1038/s43587-023-00399-w.
  8. Bhatia, V. et al. (2023). Targeting advanced prostate cancer with STEAP1 chimeric antigen receptor T cell and tumor-localized IL-12 immunotherapy. Nat Commun. 14(1):2041. doi: 10.1038/s41467-023-37874-2.
  9. Read, K.A. et al. (2023). Aiolos represses CD4+ T cell cytotoxic programming via reciprocal regulation of TFH transcription factors and IL-2 sensitivity. Nat Commun. 14(1):1652. doi: 10.1038/s41467-023-37420-0.
  10. Pham, D. et al. (2023). Batf stabilizes Th17 cell development via impaired Stat5 recruitment of Ets1-Runx1 complexes. EMBO J. 42(8):e109803. doi: 10.15252/embj.2021109803.
  11. Hahn, A.M. et al. (2023). A monoclonal Trd chain supports the development of the complete set of functional γδ T cell lineages. Cell Rep. 42(3):112253. doi: 10.1016/j.celrep.2023.112253.
  12. Liu, Q. et al. (2023). Tcf21 marks visceral adipose mesenchymal progenitors and functions as a rate-limiting factor during visceral adipose tissue development. Cell Rep. 42(3):112166. doi: 10.1016/j.celrep.2023.112166.
  13. Diril, M. et al. (2023). Genetic dissection of the Mastl-Arpp19/Ensa-PP2A-B55δ pathway in mammalian cells. TJB. 48(2):190-202. doi: 10.1515/tjb-2022-0191.
  14. Tang, J. et al. (2023). Runx3-overexpression cooperates with ex vivo AKT inhibition to generate receptor-engineered T cells with better persistence, tumor-residency, and antitumor ability. J Immunother Cancer. 11(2):e006119. doi: 10.1136/jitc-2022-006119.
  15. Oh S. et al. (2023).  Precision targeting of autoantigen-specific B cells in muscle-specific tyrosine kinase myasthenia gravis with chimeric autoantibody receptor T cells. Nat Biotechnol. doi: 10.1038/s41587-022-01637-z. 
  16. Briukhovetska, D. et al. (2023). T cell-derived interleukin-22 drives the expression of CD155 by cancer cells to suppress NK cell function and promote metastasis. Immunity. 56(1):143-161.e11. doi: 10.1016/j.immuni.2022.12.010.
  17. Saltukoglu, D. et al. (2023). Plasma membrane topography governs the 3D dynamic localization of IgM B cell antigen receptor clusters. EMBO J. 42(4):e112030. doi: 10.15252/embj.2022112030.
  18. Caravia, X.M. et al. (2022). Loss of function of the nuclear envelope protein LEMD2 causes DNA damage-dependent cardiomyopathy. J Clin Invest. 132(22):e158897. doi: 10.1172/JCI158897.
  19. Zenke, S. et al. (2022). Differential trafficking of ligands trogocytosed via CD28 versus CTLA4 promotes collective cellular control of co-stimulation. Nat Commun. 13(1):6459. doi: 10.1038/s41467-022-34156-1.
  20. Jain, P. et al. (2022). Discovery and functional characterization of the oncogenicity and targetability of a novel NOTCH1-ROS1 gene fusion in pediatric angiosarcoma. Cold Spring Harb Mol Case Stud. 8(6):a006222. doi: 10.1101/mcs.a006222.
  21. Zhong, X. et al. (2022). Decoupling the role of RORγt in the differentiation and effector function of TH17 cells. Sci Adv. 8(42):eadc9221. doi: 10.1126/sciadv.adc9221.
  22. Bresser, K. et al. (2022). Replicative history marks transcriptional and functional disparity in the CD8+ T cell memory pool. Nat Immunol. doi: 10.1038/s41590-022-01171-9.
  23. Sloat, S.R. & Hoppins, S. (2022). A dominant negative mitofusin causes mitochondrial perinuclear clusters because of aberrant tethering. Life Sci Alliance. 6(1):e202101305. doi: 10.26508/lsa.202101305.
  24. Hall, J.A. et al. (2022). Transcription factor RORα enforces stability of the Th17 cell effector program by binding to a Rorc cis-regulatory element. Immunity. doi: 10.1016/j.immuni.2022.09.013.
  25. Que, F. et al. (2022). RHOA G17V induces T follicular helper cell specification and involves angioimmunoblastic T-cell lymphoma via upregulating the expression of PON2 through an NF-κB-dependent mechanism. Oncoimmunology. 11(1):2134536. doi: 10.1080/2162402X.2022.2134536.
  26. Ren, Y. et al. (2022).  Tumorous expression of NAC1 restrains antitumor immunity through the LDHA-mediated immune evasion. J Immunother Cancer. 10(9):e004856. doi: 10.1136/jitc-2022-004856.
  27. Hojo, H. et al. (2022). Runx2 regulates chromatin accessibility to direct the osteoblast program at neonatal stages. Cell Rep. 40(10):111315. doi: 10.1016/j.celrep.2022.111315.
  28. Koschade, S.E. et al. (2022). Translatome proteomics identifies autophagy as a resistance mechanism to on-target FLT3 inhibitors in acute myeloid leukemia. Leukemia. doi: 10.1038/s41375-022-01678-y.
  29. Kotov, J.A. et al. (2022). LTβR overexpression promotes plasma cell accumulation. PLoS One. 17(8):e0270907. doi: 10.1371/journal.pone.0270907.
  30. Ma, S. et al. (2022). Protocol to assess cell-intrinsic regulatory mechanisms using an ex vivo murine T cell polarization and co-culture system. STAR Protoc. 3(3):101543. doi: 10.1016/j.xpro.2022.101543.