Platinum-E (Plat-E) Retroviral Packaging Cell Line

Platinum-E (Plat-E) Retroviral Packaging Cell Line
  • Higher retroviral yields: average titer 106 to 107 infectious units/mL with transient transfection
  • Longer stability: up to 4 months in the presence of drug selection
  • Produces ecotropic retrovirus, which can only readily infect mouse or rat cells


NOTE: Platinum Retroviral Packaging Cells are available for sale to academic, government and non-profit research laboratories. All other purchasers require a commercial license for all fields including research use. Please contact our Business Development department for license information.


Frequently Asked Questions about this product

General FAQs about Viral Gene Delivery

Email To BuyerPrint this PageCopy Link

Please contact your distributor for pricing.

Platinum-E Retroviral Packaging Cell Line, Ecotropic
Catalog Number
1 vial
Manual/Data Sheet Download
SDS Download
Product Details

Conventional cells used for retrovirus packaging, such as those based on NIH3T3 cells, have limited stability and produce relatively low yields of retrovirus, mainly due to the poor expression of retroviral structure proteins (gag, pol and env) in the cells.

The Platinum Retroviral Packaging Cell Lines are based on the 293T cell line. They exhibit longer stability and produce higher yields of retroviral structure proteins. Plat-E cells contain gag, pol and env genes, allowing retroviral packaging with a single plasmid transfection.

High Retroviral Yields with Plat-E cells. NIH3T3 cells and mouse ProB Ba/F3 cells.

High Retroviral Yields with Plat-E cells. NIH3T3 cells were infected with GFP retrovirus supernatant produced in Plat-E cells after transfection with pMX-GFP.

Recent Product Citations
  1. Li, Z. et al. (2022). In vitro Assessment of Cardiac Reprogramming by Measuring Cardiac Specific Calcium Flux with a GCaMP3 Reporter. J. Vis. Exp. 180:e62643. doi: 10.3791/62643.
  2. Hong, H. et al. (2022). Postnatal regulation of B-1a cell development and survival by the CIC-PER2-BHLHE41 axis. Cell Rep. 38(7):110386. doi: 10.1016/j.celrep.2022.110386.
  3. Kurotsu, S. et al. (2022). A biomimetic hydrogel culture system to facilitate cardiac reprogramming. STAR Protoc. doi: 10.1016/j.xpro.2022.101122.
  4. Choo, F. et al. (2022). Functional impact and targetability of PI3KCA, GNAS, and PTEN mutations in a spindle cell rhabdomyosarcoma with MYOD1 L122R mutation. Cold Spring Harb Mol Case Stud. 8(1):a006140. doi: 10.1101/mcs.a006140.
  5. Chakroborty, D. et al. (2022). An Unbiased Functional Genetics Screen Identifies Rare Activating ERBB4 Mutations. Cancer Res Commun. 2(1):10-27. doi: 10.1158/2767-9764.CRC-21-0021.
  6. Evrard, M. et al. (2022). Sphingosine 1-phosphate receptor 5 (S1PR5) regulates the peripheral retention of tissue-resident lymphocytes. J Exp Med. 219(1):e20210116. doi: 10.1084/jem.20210116.
  7. Li, J. et al. (2021). Control of Foxp3 induction and maintenance by sequential histone acetylation and DNA demethylation. Cell Rep. 37(11):110124. doi: 10.1016/j.celrep.2021.110124.
  8. Marangoni, F. et al. (2021). Expansion of tumor-associated Treg cells upon disruption of a CTLA-4-dependent feedback loop. Cell. doi: 10.1016/j.cell.2021.05.027.
  9. Klawon, D.E.J. et al. (2021). Altered selection on a single self-ligand promotes susceptibility to organ-specific T cell infiltration. J Exp Med. 218(6):e20200701. doi: 10.1084/jem.20200701.
  10. Conde, E. et al. (2021). Epitope spreading driven by the joint action of CART cells and pharmacological STING stimulation counteracts tumor escape via antigen-loss variants. J Immunother Cancer. 9(11):e003351. doi: 10.1136/jitc-2021-003351.
  11. Menzel, L. et al. (2021).  Lymphocyte access to lymphoma is impaired by high endothelial venule regression. Cell Rep. 37(4):109878. doi: 10.1016/j.celrep.2021.109878.
  12. Chao. J.L. et al. (2021). Effector T cell responses unleashed by regulatory T cell ablation exacerbate oral squamous cell carcinoma. Cell Rep Med. 2(9): 100399. doi: 10.1016/j.xcrm.2021.100399.
  13. Flommersfeld, S. et al. (2021). Fate mapping of single NK cells identifies a type 1 innate lymphoid-like lineage that bridges innate and adaptive recognition of viral infection. Immunity. doi: 10.1016/j.immuni.2021.08.002.
  14. Eremenko, E. et al. (2021). An optimized protocol for the retroviral transduction of mouse CD4 T cells. STAR Protoc. 2(3):100719. doi: 10.1016/j.xpro.2021.100719.
  15. Li, C. et al. (2021). Interferon-α-producing plasmacytoid dendritic cells drive the loss of adipose tissue regulatory T cells during obesity. Cell Metab. doi: 10.1016/j.cmet.2021.06.007.
  16. Lesch, S. et al. (2021). T cells armed with C-X-C chemokine receptor type 6 enhance adoptive cell therapy for pancreatic tumours. Nat Biomed Eng. doi: 10.1038/s41551-021-00737-6. 
  17. Dileepan, T. et al. (2021). MHC class II tetramers engineered for enhanced binding to CD4 improve detection of antigen-specific T cells. Nat Biotechnol. doi: 10.1038/s41587-021-00893-9.
  18. Kim, K.P. et al. (2021). Donor cell memory confers a metastable state of directly converted cells. Cell Stem Cell. doi: 10.1016/j.stem.2021.02.023.
  19. Dudek, M. et al. (2021). Auto-aggressive CXCR6+ CD8 T cells cause liver immune pathology in NASH. Nature. doi: 10.1038/s41586-021-03233-8.
  20. Ferreira, A.C.F. et al. (2021). RORα is a critical checkpoint for T cell and ILC2 commitment in the embryonic thymus. Nat Immunol. doi: 10.1038/s41590-020-00833-w.
  21. Xu, N. et al. (2021). STING agonist promotes CAR T cell trafficking and persistence in breast cancer. J Exp Med. 218(2):e20200844. doi: 10.1084/jem.20200844.
  22. Yasuda, K. et al. (2021). Protein phosphatase 1 regulatory subunit 18 suppresses the transcriptional activity of NFATc1 via regulation of c-fos. Bone Rep. doi: 10.1016/j.bonr.2021.101114.
  23. Seo, H. et al. (2021). BATF and IRF4 cooperate to counter exhaustion in tumor-infiltrating CAR T cells. Nat Immunol. 22(8):983-995. doi: 10.1038/s41590-021-00964-8.
  24. Marks, K.E. et al. (2021). Toll-like receptor 2 induces pathogenicity in Th17 cells and reveals a role for IPCEF in regulating Th17 cell migration. Cell Rep. 35(13):109303. doi: 10.1016/j.celrep.2021.109303.
  25. Bektik, E. et al. (2021). Inhibition of CREB-CBP Signaling Improves Fibroblast Plasticity for Direct Cardiac Reprogramming. Cells. 10(7):1572. doi: 10.3390/cells10071572. 
  26. Bae, S. et al. (2021). MYC-mediated early glycolysis negatively regulates proinflammatory responses by controlling IRF4 in inflammatory macrophages. Cell Rep. 35(11):109264. doi: 10.1016/j.celrep.2021.109264.
  27. Lim, C.K. et al. (2021). Dimethyl sulfoxide (DMSO) enhances direct cardiac reprogramming by inhibiting the bromodomain of coactivators CBP/p300. J Mol Cell Cardiol. doi: 10.1016/j.yjmcc.2021.06.008.
  28. Kim, C. et al. (2021). Histone deficiency and accelerated replication stress in T cell aging. J Clin Invest. 131(11):143632. doi: 10.1172/JCI143632.
  29. Xing, J. et al. (2021). Identification of poly(ADP-ribose) polymerase 9 (PARP9) as a noncanonical sensor for RNA virus in dendritic cells. Nat Commun. 12(1):2681. doi: 10.1038/s41467-021-23003-4.
  30. Rana, J. et al. (2021). CAR and TRuC redirected regulatory T cells differ in capacity to control adaptive immunity to FVIII. Mol Ther. doi: 10.1016/j.ymthe.2021.04.034.