Platinum-E (Plat-E) Retroviral Packaging Cell Line

Platinum-E (Plat-E) Retroviral Packaging Cell Line
  • Higher retroviral yields: average titer 106 to 107 infectious units/mL with transient transfection
  • Longer stability: up to 4 months in the presence of drug selection
  • Produces ecotropic retrovirus, which can only readily infect mouse or rat cells

 

NOTE: Platinum Retroviral Packaging Cells are available for sale to academic, government and non-profit research laboratories. All other purchasers require a commercial license for all fields including research use. Please contact our Business Development department for license information.

 

Frequently Asked Questions about this product

General FAQs about Viral Gene Delivery

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

Platinum-E Retroviral Packaging Cell Line, Ecotropic
Catalog Number
RV-101
Size
1 vial
Detection
N/A
Manual/Data Sheet Download
SDS Download
Price
$750.00
Product Details

Conventional cells used for retrovirus packaging, such as those based on NIH3T3 cells, have limited stability and produce relatively low yields of retrovirus, mainly due to the poor expression of retroviral structure proteins (gag, pol and env) in the cells.

The Platinum Retroviral Packaging Cell Lines are based on the 293T cell line. They exhibit longer stability and produce higher yields of retroviral structure proteins. Plat-E cells contain gag, pol and env genes, allowing retroviral packaging with a single plasmid transfection.

High Retroviral Yields with Plat-E cells. NIH3T3 cells and mouse ProB Ba/F3 cells.

High Retroviral Yields with Plat-E cells. NIH3T3 cells were infected with GFP retrovirus supernatant produced in Plat-E cells after transfection with pMX-GFP.

Recent Product Citations
  1. Caravia, X.M. et al. (2022). Loss of function of the nuclear envelope protein LEMD2 causes DNA damage-dependent cardiomyopathy. J Clin Invest. 132(22):e158897. doi: 10.1172/JCI158897.
  2. Zenke, S. et al. (2022). Differential trafficking of ligands trogocytosed via CD28 versus CTLA4 promotes collective cellular control of co-stimulation. Nat Commun. 13(1):6459. doi: 10.1038/s41467-022-34156-1.
  3. Jain, P. et al. (2022). Discovery and functional characterization of the oncogenicity and targetability of a novel NOTCH1-ROS1 gene fusion in pediatric angiosarcoma. Cold Spring Harb Mol Case Stud. 8(6):a006222. doi: 10.1101/mcs.a006222.
  4. Zhong, X. et al. (2022). Decoupling the role of RORγt in the differentiation and effector function of TH17 cells. Sci Adv. 8(42):eadc9221. doi: 10.1126/sciadv.adc9221.
  5. Bresser, K. et al. (2022). Replicative history marks transcriptional and functional disparity in the CD8+ T cell memory pool. Nat Immunol. doi: 10.1038/s41590-022-01171-9.
  6. Sloat, S.R. & Hoppins, S. (2022). A dominant negative mitofusin causes mitochondrial perinuclear clusters because of aberrant tethering. Life Sci Alliance. 6(1):e202101305. doi: 10.26508/lsa.202101305.
  7. Hall, J.A. et al. (2022). Transcription factor RORα enforces stability of the Th17 cell effector program by binding to a Rorc cis-regulatory element. Immunity. doi: 10.1016/j.immuni.2022.09.013.
  8. Que, F. et al. (2022). RHOA G17V induces T follicular helper cell specification and involves angioimmunoblastic T-cell lymphoma via upregulating the expression of PON2 through an NF-κB-dependent mechanism. Oncoimmunology. 11(1):2134536. doi: 10.1080/2162402X.2022.2134536.
  9. Ren, Y. et al. (2022).  Tumorous expression of NAC1 restrains antitumor immunity through the LDHA-mediated immune evasion. J Immunother Cancer. 10(9):e004856. doi: 10.1136/jitc-2022-004856.
  10. Hojo, H. et al. (2022). Runx2 regulates chromatin accessibility to direct the osteoblast program at neonatal stages. Cell Rep. 40(10):111315. doi: 10.1016/j.celrep.2022.111315.
  11. Koschade, S.E. et al. (2022). Translatome proteomics identifies autophagy as a resistance mechanism to on-target FLT3 inhibitors in acute myeloid leukemia. Leukemia. doi: 10.1038/s41375-022-01678-y.
  12. Kotov, J.A. et al. (2022). LTβR overexpression promotes plasma cell accumulation. PLoS One. 17(8):e0270907. doi: 10.1371/journal.pone.0270907.
  13. Ma, S. et al. (2022). Protocol to assess cell-intrinsic regulatory mechanisms using an ex vivo murine T cell polarization and co-culture system. STAR Protoc. 3(3):101543. doi: 10.1016/j.xpro.2022.101543.
  14. Sie, C. et al. (2022). IL-24 intrinsically regulates Th17 cell pathogenicity in mice. J Exp Med. 219(8):e20212443. doi: 10.1084/jem.20212443.
  15. Hiraike, Y. et al. (2022). NFIA determines the cis-effect of genetic variation on Ucp1 expression in murinethermogenic adipocytes. iScience. 25(8):104729. doi: 10.1016/j.isci.2022.104729.
  16. Hong, H. & Lee, Y. (2022). Generation of hematopoietic lineage cell-specific chimeric mice using retrovirus-transduced fetal liver cells. STAR Protoc. 3(3):101526. doi: 10.1016/j.xpro.2022.101526.
  17. Zhang, H. et al. (2022). TCR activation directly stimulates PYGB-dependent glycogenolysis to fuel the early recall response in CD8+ memory T cells. Mol Cell. doi: 10.1016/j.molcel.2022.06.002.
  18. Zhang, W. et al. (2022). Steroid nuclear receptor coactivator 2 controls immune tolerance by promoting induced Treg differentiation via up-regulating Nr4a2. Sci Adv. 8(24):eabn7662. doi: 10.1126/sciadv.abn7662.
  19. Ramirez-Martinez, A. et al. (2022). Impaired activity of the fusogenic micropeptide Myomixer causes myopathy resembling Carey-Fineman-Ziter syndrome. J Clin Invest. 132(11):e159002. doi: 10.1172/JCI159002.
  20. Köferle, A. et al. (2022). Interrogation of cancer gene dependencies reveals paralog interactions of autosome and sex chromosome-encoded genes. Cell Rep. 39(2):110636. doi: 10.1016/j.celrep.2022.110636.
  21. Hirobe, S. et al. (2022). The Effects of Chimeric Antigen Receptor (CAR) Hinge Domain Post-Translational Modifications on CAR-T Cell Activity. Int J Mol Sci. 23(7):4056. doi: 10.3390/ijms23074056.
  22. Hochrein, S.M. et al. (2022). The glucose transporter GLUT3 controls T helper 17 cell responses through glycolytic-epigenetic reprogramming. Cell Metab. 34(4):516-532.e11. doi: 10.1016/j.cmet.2022.02.015.
  23. Ma, S. et al. (2022). RORγt phosphorylation protects against T cell-mediated inflammation. Cell Rep. 38(11):110520. doi: 10.1016/j.celrep.2022.110520.
  24. Li, Z. et al. (2022). In vitro Assessment of Cardiac Reprogramming by Measuring Cardiac Specific Calcium Flux with a GCaMP3 Reporter. J. Vis. Exp. 180:e62643. doi: 10.3791/62643.
  25. Hong, H. et al. (2022). Postnatal regulation of B-1a cell development and survival by the CIC-PER2-BHLHE41 axis. Cell Rep. 38(7):110386. doi: 10.1016/j.celrep.2022.110386.
  26. Kurotsu, S. et al. (2022). A biomimetic hydrogel culture system to facilitate cardiac reprogramming. STAR Protoc. doi: 10.1016/j.xpro.2022.101122.
  27. Choo, F. et al. (2022). Functional impact and targetability of PI3KCA, GNAS, and PTEN mutations in a spindle cell rhabdomyosarcoma with MYOD1 L122R mutation. Cold Spring Harb Mol Case Stud. 8(1):a006140. doi: 10.1101/mcs.a006140.
  28. Chakroborty, D. et al. (2022). An Unbiased Functional Genetics Screen Identifies Rare Activating ERBB4 Mutations. Cancer Res Commun. 2(1):10-27. doi: 10.1158/2767-9764.CRC-21-0021.
  29. Evrard, M. et al. (2022). Sphingosine 1-phosphate receptor 5 (S1PR5) regulates the peripheral retention of tissue-resident lymphocytes. J Exp Med. 219(1):e20210116. doi: 10.1084/jem.20210116.
  30. Zhang, J. et al. (2021). USP19 Suppresses Th17-Driven Pathogenesis in Autoimmunity. J Immunol. doi: 10.4049/jimmunol.2100205.