Rac Activation Assays

Rac Activation Assays
  • Safe non-radioactive assay format
  • Colored agarose beads allow visual check
  • Fast results: 1 hour plus electrophoresis/blotting time
  • Compatible with human, mouse, and rat samples (Rac2 assays with human and mouse only)

 

Frequently Asked Questions about this product

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

Rac1 Activation Assay
Catalog Number
STA-401-1
Size
20 assays
Detection
Immunoblot
Manual/Data Sheet Download
SDS Download
Price
$625.00
Rac2 Activation Assay
Catalog Number
STA-401-2
Size
20 assays
Detection
Immunoblot
Manual/Data Sheet Download
SDS Download
Price
$625.00
RhoA/Rac1/Cdc42 Activation Assay Combo Kit
Catalog Number
STA-405
Size
3 x 10 assays
Detection
Immunoblot
Manual/Data Sheet Download
SDS Download
Price
$920.00
Rac1/Cdc42 Activation Assay Combo Kit
Catalog Number
STA-404
Size
2 x 20 assays
Detection
Immunoblot
Manual/Data Sheet Download
SDS Download
Price
$920.00
Rac1 Activation Assay Kit, Trial Size
Catalog Number
STA-401-1-T
Size
5 assays
Detection
Immunoblot
Manual/Data Sheet Download
SDS Download
Price
$310.00
Product Details

Our Rac Activation Assays use visible agarose beads to selectively precipitate the active form of Rac1 or Rac2. The precipitated small GTPase is then detected by Western blot using a Rac1- or Rac2-specific antibody included in the kit.

If you are also studying Cdc42 or RhoA, you may consider one of our economical combination kits.

Small GTPase Activation Assay Principle

Immunoblotting with the Rac Activation Assay. Lane 1: GTPase Immunoblot Positive Control. Lane 2: 293 cell lysate loaded with GDP and incubated with PAK1 PBD Agarose beads. Lane 3: 293 cell lysate loaded with GTPγS and incubated with PAK1 PBD Agarose beads.

Recent Product Citations
  1. Rajakylä, E.K. et al. (2020). Assembly of Peripheral Actomyosin Bundles in Epithelial Cells Is Dependent on the CaMKK2/AMPK Pathway. Cell Rep. 30(12):4266-4280.e4. doi: 10.1016/j.celrep.2020.02.096 (#STA-405).
  2. Farzaneh Behelgardi, M. et al. (2020). Targeting signaling pathways of VEGFR1 and VEGFR2 as a potential target in the treatment of breast cancer. Mol Biol Rep. doi: 10.1007/s11033-020-05306-9 (#STA-401-1).
  3. Stoner, S.A. et al. (2020). The RUNX1-ETO target gene RASSF2 suppresses t(8;21) AML development and regulates Rac GTPase signaling. Blood Cancer J. 10(2):16. doi: 10.1038/s41408-020-0282-9 (#STA-401-1).
  4. Festa, L.K. et al. (2020). CXCL12-induced rescue of cortical dendritic spines and cognitive flexibility. Elife. 9. pii: e49717. doi: 10.7554/eLife.49717 (#STA-401-1).
  5. Wang, D. et al. (2020). Anillin regulates breast cancer cell migration, growth, and metastasis by non-canonical mechanisms involving control of cell stemness and differentiation. Breast Cancer Res. 22(1):3. doi: 10.1186/s13058-019-1241-x (#STA-401-1).
  6. Hirano, T. et al. (2020). FARP1 boosts CDC42 activity from integrin αvβ5 signaling and correlates with poor prognosis of advanced gastric cancer. Oncogenesis. 9(2):13. doi: 10.1038/s41389-020-0190-7 (#STA-405).
  7. Pepe, G. et al. (2019). β-Lactoglobulin Heptapeptide Reduces Oxidative Stress in Intestinal Epithelial Cells and Angiotensin II-Induced Vasoconstriction on Mouse Mesenteric Arteries by Induction of Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) Translocation. Oxid Med Cell Longev. doi: 10.1155/2019/1616239 (#STA-401-1).
  8. Morgan, E.L. et al. (2019). Autocrine STAT3 activation in HPV positive cervical cancer through a virus-driven Rac1-NFκB-IL-6 signalling axis. PLoS Pathog. 15(6):e1007835. doi: 10.1371/journal.ppat.1007835 (#STA-401-1).
  9. Phung, B. et al. (2019). The X-Linked DDX3X RNA Helicase Dictates Translation Reprogramming and Metastasis in Melanoma. Cell Rep. 27(12):3573-3586.e7. doi: 10.1016/j.celrep.2019.05.069 (#STA-401-1).
  10. Kröger, C. et al. (2019). Acquisition of a hybrid E/M state is essential for tumorigenicity of basal breast cancer cells. Proc Natl Acad Sci U S A. 116(15):7353-7362. doi: 10.1073/pnas.1812876116 (#STA-401-1).
  11. Wen-Jian, Y. et al. (2019). NF45 promotes esophageal squamous carcinoma cell invasion by increasing Rac1 activity through 14-3-3ε protein. Arch Biochem Biophys. 663:101-108. doi: 10.1016/j.abb.2018.12.012 (#STA-401-1).
  12. Kang, M. et al. (2019). Roles of CD133 in microvesicle formation and oncoprotein trafficking in colon cancer. FASEB J. 33(3):4248-4260. doi: 10.1096/fj.201802018R (#STA-401-1).
  13. Guan, T. et al. (2019). Aristolochic acid inhibits Slit2-induced migration and tube formation via inactivation of Robo1/Robo2-NCK1/NCK2 signaling pathway in human umbilical vein endothelial cells. Toxicol Lett. 300:51-58. doi: 10.1016/j.toxlet.2018.10.022 (#STA-401-1).
  14. Zhao, K. et al. (2019). TesG is a type I secretion effector of Pseudomonas aeruginosa that suppresses the host immune response during chronic infection. Nat Microbiol. 4(3):459-469. doi: 10.1038/s41564-018-0322-4 (#STA-401-2).
  15. Shin, B. et al. (2019). Rac1 Inhibition Via Srgap2 Restrains Inflammatory Osteoclastogenesis and Limits the Clastokine, SLIT3. J Bone Miner Res. doi: 10.1002/jbmr.3945 (#STA-404).
  16. Mohapatra, P. et al. (2019). Combination therapy targeting the elevated interleukin-6 level reduces invasive migration of BRAF inhibitor-resistant melanoma cells. Mol Oncol. 13(2):480-494. doi: 10.1002/1878-0261.12433 (#STA-404).
  17. Nicolas, S. et al. (2019). Hypoxia and EGF Stimulation Regulate VEGF Expression in Human Glioblastoma Multiforme (GBM) Cells by Differential Regulation of the PI3K/Rho-GTPase and MAPK Pathways. Cells. 8(11). pii: E1397. doi: 10.3390/cells8111397 (#STA-405).
  18. Fostok, S. et al. (2019). Connexin 43 Loss Triggers Cell Cycle Entry and Invasion in Non-Neoplastic Breast Epithelium: A Role for Noncanonical Wnt Signaling. Cancers (Basel). 11(3). pii: E339. doi: 10.3390/cancers11030339 (#STA-405).
  19. El Atat, O. et al. (2019). RHOG Activates RAC1 through CDC42 Leading to Tube Formation in Vascular Endothelial Cells. Cells. 8(2). pii: E171. doi: 10.3390/cells8020171 (#STA-405).
  20. Kim, D. et al. (2019). Lysophosphatidic acid increases mesangial cell proliferation in models of diabetic nephropathy via Rac1/MAPK/KLF5 signaling. Exp Mol Med. 51(2):18. doi: 10.1038/s12276-019-0217-3 (#STA-405).
  21. Zhang, F. et al. (2018). GAP43, a novel metastasis promoter in non-small cell lung cancer. J Transl Med. 16(1):310. doi: 10.1186/s12967-018-1682-5 (#STA-405).
  22. Chen, Z.S. et al. (2018). Planar cell polarity gene Fuz triggers apoptosis in neurodegenerative disease models. EMBO Rep. 19(9). pii: e45409. doi: 10.15252/embr.201745409 (#STA-405).
  23. Stocker, T.J. et al. (2018). The Actin Regulator Coronin-1A Modulates Platelet Shape Change and Consolidates Arterial Thrombosis. Thromb Haemost. 118(12):2098-2111. doi: 10.1055/s-0038-1675604 (#STA-404).
  24. Khanna, P. et al. (2018). GRAMD1B regulates cell migration in breast cancer cells through JAK/STAT and Akt signaling. Sci Rep. 8(1):9511. doi: 10.1038/s41598-018-27864-6 (#STA-404).
  25. Schiapparelli, P. et al. (2017). NKCC1 regulates migration ability of glioblastoma cells by modulation of actin dynamics and interacting with cofilin. EBioMedicine. doi: 10.1016/j.ebiom.2017.06.020 (#STA-405).
  26. Prudent, J. et al. (2016). Mitochondrial Ca2+ uptake controls actin cytoskeleton dynamics during cell migration. Sci. Rep. 6:36570 (#STA-405).
  27. Baetta, R. et al. (2015). Atorvastatin reduces long pentraxin 3 expression in vascular cells by inhibiting protein geranylgeranylation. Vascul Pharmacol. doi: 10.1016/j.vph.2014.11.008 (#STA-401-2).
  28. Tanaka, U. et al. (2015). Sprouty2 inhibition promotes proliferation and migration of periodontal ligament cells. Oral Dis. doi: 10.1111/odi.12369 (#STA-404).
  29. Galic, M. et al. (2014). Dynamic Recruitment of the Curvature-Sensitive Protein ArhGAP44 to Nanoscale Membrane Deformations Limits Exploratory Filopodia Initiation in Neurons. Elife. doi: 10.7554/eLife.03116 (#STA-404).
  30. Holmes,K.M. et al.(2012).Insulin-Like Growth Factor-Binding Protein 2-Driven Glioma Progression is Prevented by Blocking a Clinically Significant Integrin, Integrin-Linked Kinase, and NF-B Network. Proc Natl Acad Sci . 109:2168-2173 (#STA-404).