Ras Activation Assay

Ras Activation Assays
  • Safe non-radioactive assay format
  • Colored agarose beads allow visual check
  • Fast results: 1 hour plus electrophoresis/blotting time
  • Compatible with human, mouse, and rat samples

 

Frequently Asked Questions about this product

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

Pan-Ras Activation Assay Kit
Catalog Number
STA-400
Size
20 assays
Detection
Immunoblot
Manual/Data Sheet Download
SDS Download
Price
$665.00
Product Details

Our Pan-Ras Activation Assay uses visible agarose beads to selectively precipitate the active form of Ras protein. The precipitated small GTPase is then detected by Western blot using a target-specific antibody included in the kit. The kit detects the H-Ras, K-Ras, and N-Ras isoforms.

Small GTPase Activation Assay Principle

Recent Product Citations
  1. Motta, M. et al. (2021).  SPRED2 loss-of-function causes a recessive Noonan syndrome-like phenotype. Am J Hum Genet. 108(11):2112-2129. doi: 10.1016/j.ajhg.2021.09.007 (#STA-400).
  2. Kanda, M. et al. (2020). Therapeutic monoclonal antibody targeting of neuronal pentraxin receptor to control metastasis in gastric cancer. Mol Cancer. 19(1):131. doi: 10.1186/s12943-020-01251-0 (#STA-400).
  3. Bersuker, K. et al. (2019). The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature. doi: 10.1038/s41586-019-1705-2 (#STA-400).
  4. Dobenecker, M.W. et al. (2018). Signaling function of PRC2 is essential for TCR-driven T cell responses. J Exp Med. 215(4):1101-1113. doi: 10.1084/jem.20170084 (#STA-400).
  5. Sangrador, I. et al. (2018). Zeb1 in Stromal Myofibroblasts Promotes Kras-Driven Development of Pancreatic Cancer. Cancer Res. 78(10):2624-2637. doi: 10.1158/0008-5472.CAN-17-1882 (#STA-400).
  6. Ullrich M, et al. (2017). OCD-like behavior is caused by dysfunction of thalamo-amygdala circuits and upregulated TrkB/ERK-MAPK signaling as a result of SPRED2 deficiency. Mol Psychiatry. doi: 10.1038/mp.2016.232 (#STA-400).
  7. Nakaoka, H. J. et al. (2016). NECAB3 promotes activation of hypoxia-inducible factor-1 during normoxia and enhances tumourigenicity of cancer cells. Sci Rep.6:22784 (#STA-400).
  8. Gall, J. M. et al. (2014). Conditional Knockout of Proximal Tubule Mitofusin 2 Accelerates Recovery and Improves Survival after Renal Ischemia. J Am Soc Nephrol. 10.1681/ASN.2014010126 (#STA-400).
  9. Nikolos, F. et al. (2014).  ERβ Regulates NSCLC Phenotypes by Controlling Oncogenic RAS Signaling. Mol Cancer Res. 12:843-854 (#STA-400).
  10. Ohashi, K. et al. (2012).  Lung Cancers with Acquired Resistance to EGFR Inhibitors Occasionally Harbor BRAF Gene Mutations but Lack Mutations in KRAS, NRAS, or MEK1. PNAS. 109:E2127-E2133 (#STA-400).
  11. Geryk-Hall, M. et al. (2010). Driven to Death: Inhibition of Farnesylation Increases Ras Activity in Osteosarcoma and Promotes Growth Arrest and Cell Death. Mol. Cancer Ther. 9:1111-119 (#STA-400).
  12. Camalier, C.E. et al. (2010). Elevated Phosphate Activates N-ras and Promotes Cell Transformation and Skin Tumorigenesis. Cancer Prev. Res. 3:359-370 (#STA-400).
  13. Harmon, B. et al. (2008). Induction of the G-alpha-q Signaling Cascade by the Human Immunodeficiency Virus Envelope is Required for Virus Entry. J. Virol. 82:9191-9205 (#STA-400).