5 µm Chemotaxis Assays, 24-Well Format

5 µm Chemotaxis Assays, 24-Well Format
  • Fully quantify chemotaxis with no manual cell counting
  • Measure chemotaxis in less than 6 hours with most cell types
  • Membrane inserts are uncoated to allow use with any chemoattractant
  • Detection with fluorescence plate reader


Frequently Asked Questions about this product

General FAQs about Chemotaxis Assays

Email To BuyerPrint this PageCopy Link

Please contact your distributor for pricing.

CytoSelect™ 24-Well Cell Migration Assay, 5 µm
Catalog Number
12 assays
Manual/Data Sheet Download
SDS Download
CytoSelect™ 24-Well Cell Migration Assay, 5 µm
Catalog Number
5 x 12 assays
Manual/Data Sheet Download
SDS Download
Product Details

Chemotaxis describes the movement of cells toward or away from a chemical stimulus in their enviroment. Cell chemotaxis plays a pivotal role in the progression of cancer and other diseases.

CytoSelect™ Cell Migration Assays are ideal for determining the chemotactic properties of cells. The 5 µm pore size is ideal for monocytes / macrophages.

CytoSelect™ Chemotaxis Assay Principle. Migratory cells move through the polycarbonate membrane toward a chemoattractant underneath the membrane inserts.

Recent Product Citations
  1. Rodriguez, B.L. et al. (2023). Targeting immunosuppressive Ly6C+ classical monocytes reverses anti-PD-1/CTLA-4 immunotherapy resistance. Front Immunol. doi: 10.3389/fimmu.2023.1161869.
  2. Javeed, N. et al. (2021). Pro-inflammatory β cell small extracellular vesicles induce β cell failure through activation of the CXCL10/CXCR3 axis in diabetes. Cell Rep. 36(8):109613. doi: 10.1016/j.celrep.2021.109613.
  3. Chung, N.P.Y. et al. (2021). HIV induces airway basal progenitor cells to adopt an inflammatory phenotype. Sci Rep. 11(1):3988. doi: 10.1038/s41598-021-82143-1.
  4. Shen, Z.J. et al. (2021). Pin1 Regulates IL-5 Induced Eosinophil Polarization and Migration. Cells. 10(2):211. doi: 10.3390/cells10020211.
  5. Albrahim, T. et al. (2020). In Vitro Studies on the Immunomodulatory Effects of Pulicaria crispa Extract on Human THP-1 Monocytes. Oxid Med Cell Longev. doi: 10.1155/2020/7574606.
  6. Tomita, R. et al. (2020). Macrophage‑derived exosomes attenuate the susceptibility of oral squamous cell carcinoma cells to chemotherapeutic drugs through the AKT/GSK‑3β pathway. Oncol Rep. doi: 10.3892/or.2020.7748.
  7. de Vries, D.H. et al. (2020). Integrating GWAS with bulk and single-cell RNA-sequencing reveals a role for LY86 in the anti-Candida host response. PLoS Pathog. 16(4):e1008408. doi: 10.1371/journal.ppat.1008408.
  8. Mori, K. et al. (2019). Ipragliflozin-induced adipose expansion inhibits cuff-induced vascular remodeling in mice. Cardiovasc Diabetol. 18(1):83. doi: 10.1186/s12933-019-0886-1.
  9. Kiso, K. et al. (2017). Transgelin-2 is upregulated on activated B-cells and expressed in hyperplastic follicles in lupus erythematosus patients. PLoS One. 12(9):e0184738. doi: 10.1371/journal.pone.0184738.
  10. Woo, J.I. et al (2010). Spiral ligament fibrocyte-derived MCP-1/CCL2 contributes to inner ear inflammation secondary to nontypeable H. influenzae-induced otitis media. BMC Infect Dis. 10:314. doi: 10.1186/1471-2334-10-314.
  11. Stranahan, A.M. et al. (2016). Blood-brain barrier breakdown promotes macrophage infiltration and cognitive impairment in leptin receptor-deficient mice. J. Cereb. Blood Flow Metab. 36:2108-2121.
  12. Yu, Y. et al. (2016). Mesenchymal stem cells with Sirt1 overexpression suppress breast tumor growth via chemokine-dependent natural killer cells recruitment. Sci. Rep. 6:35998.
  13. Lei, D. et al. (2016). Lentiviral delivery of small hairpin RNA targeting connective tissue growth factor blocks profibrotic signaling in Tenon's capsule fibroblasts. Invest Ophthalmol Vis Sci.  57:5171-5180.
  14. Du, W. et al. (2016). Age-associated vascular inflammation promotes monocytosis during atherogenesis. Aging Cell. doi:10.1111/acel.12488.
  15. Deng, B., & Feng. Y. (2015). TIPE2 mediates the suppressive effects of Shikonin on MMP13 in osteosarcoma cells. Cell Physiol Biochem. 37:2434-2443.
  16. Choi, B. et al. (2015). Cytosolic Hsp60 orchestrates the survival and inflammatory responses of vascular smooth muscle cells in injured aortic vessels. Cardiovasc Res. doi: http://dx.doi.org/10.1093/cvr/cvv130
  17. Sa, Y. et al. (2015). TIMP-1 induces α-smooth muscle actin in fibroblasts to promote urethral scar formation. Cell Physiol Biochem. 35:2233-2243.
  18. Wu, W. et al. (2015). FBXL5 inhibits metastasis of gastric cancer through suppressing Snail1Cell Physiol Biochem. 35:1764-1772.
  19. Liu, X. et al. (2015). MicroRNA-10b downregulation mediates acute rejection of renal allografts by derepressing BCL2L11. Exp Cell Res.  doi: 10.1016/j.yexcr.2015.01.018. 
  20. Lee, Y. H. et al. (2014). Stretch-induced human myometrial cytokines enhance immune cell recruitment via endothelial activation. Cell Mol Immunol. doi: 10.1038/cmi.2014.39.
  21. Cizkova, D. et al. (2014). Modulation properties of factors released by bone marrow stromal cells on activated microglia: an in vitro study. Sci Rep. 4:7514.
  22. Jelacic, T.M., et al. (2014). Exposure to Bacillus anthracis capsule results in suppression of human monocyte-derived dendritic cells. Infect Immun. 82:3405-3416.
  23. Kiss, J. et al. (2012).Loss of the Oxygen Sensor PHD3 Enhances the Innate Immune Response to Abdominal Sepsis. J. Immunol. 189:1955-1965.
  24. Rayner, K. et al. (2008). Extracellular Release of the Atheroprotective Heat Shock Protein 27 is Mediated by Estrogen and Completely Inhibits acLDL Binding to Scavenger Receptor-A. Circ. Res. 103(2):133-141.
  25. Shynlova, O. et al. (2008). Monocyte Chemoattractant Protein-1 (CCL-2) Integrates Mechanical and Endocrine Signals that Mediate Term and Preterm Labor. J. Immunol. 181:1470-1479.