8 µm Chemotaxis Assays, 24-Well Format

8 µm Chemotaxis Assays, 24-Well Format
  • Fully quantify chemotaxis with no manual cell counting
  • Measure chemotaxis in less than 6 hours with most cell types
  • Membrane inserts are uncoated to allow use with any chemoattractant
  • Colorimetric or fluorometric detection

 

Frequently Asked Questions about this product

General FAQs about Chemotaxis Assays

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

CytoSelect™ 24-Well Cell Migration Assay, 8 μm
Catalog Number
CBA-100
Size
12 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$435.00
CytoSelect™ 24-Well Cell Migration Assay, 8 μm
Catalog Number
CBA-101
Size
12 assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$445.00
CytoSelect™ 24-Well Cell Migration Assay, 8 μm
Catalog Number
CBA-100-5
Size
5 x 12 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$1,985.00
CytoSelect™ 24-Well Cell Migration Assay, 8 μm
Catalog Number
CBA-101-5
Size
5 x 12 assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$2,015.00
CytoSelect™ 24-Well Cell Migration Assay, 8 µm, Trial Size
Catalog Number
CBA-100-T
Size
4 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$215.00
CytoSelect™ 24-Well Cell Migration Assay, 8 µm, Trial Size
Catalog Number
CBA-101-T
Size
4 assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$220.00
Product Details

Chemotaxis describes the movement of cells toward or away from a chemical stimulus in their enviroment. Cell chemotaxis plays a pivotal role in the progression of cancer and other diseases.

CytoSelect™ Cell Migration Assays are ideal for determining the chemotactic properties of cells. The 8 µm pore size is suitable for most cell types including epithelial cells, fibroblasts, and cancer cell lines.

CytoSelect™ Chemotaxis Assay Principle. Migratory cells move through the polycarbonate membrane toward a chemoattractant underneath the membrane inserts.

Migration of Human Fibrosarcoma HT-1080 Cells. Cells were seeded at 30,000 cells per well of a 24-well plate and allowed to migrate toward 10% FBS for 4 hours in either the presence or absence of 2µM Cytochalasin D. Migratory cells on the bottom of the polycarbonate membrane were stained (top) and quantified in a fluorescence plate reader (bottom).

Recent Product Citations
  1. Kwon, S. et al. (2020). Biomarkers to quantify cell migration characteristics. Cancer Cell Int. 20:217. doi: 10.1186/s12935-020-01312-w (#CBA-100).
  2. Oh, J.M. et al. (2020). U1 snRNP regulates cancer cell migration and invasion in vitro. Nat Commun. 11(1):1. doi: 10.1038/s41467-019-13993-7 (#CBA-100).
  3. Vay, S.U. et al. (2020). The impact of hyperpolarization-activated cyclic nucleotide-gated (HCN) and voltage-gated potassium KCNQ/Kv7 channels on primary microglia function. J Neuroinflammation. 17(1):100. doi: 10.1186/s12974-020-01779-4 (#CBA-100).
  4. Nyiramana, M.M. et al. (2020). Sea Hare Hydrolysate-Induced Reduction of Human Non-Small Cell Lung Cancer Cell Growth through Regulation of Macrophage Polarization and Non-Apoptotic Regulated Cell Death Pathways. Cancers. 12:726. doi: 10.3390/cancers12030726 (#CBA-100).
  5. Zheng, Q. et al. (2020). Cytotoxicity of amide-linked local anesthetics on melanoma cells via inhibition of Ras and RhoA signaling independent of sodium channel blockade. BMC Anesthesiol. 20(1):43. doi: 10.1186/s12871-020-00957-4 (#CBA-100).
  6. Chen, J. et al. (2020). Inhibition of arachidonate lipoxygenase12 targets lung cancer through inhibiting EMT and suppressing RhoA and NF-κB activity. Biochem Biophys Res Commun. pii: S0006-291X(20)30251-5. doi: 10.1016/j.bbrc.2020.01.166 (#CBA-100).
  7. Wang, S. et al. (2020). Tissue-specific angiogenic and invasive properties of human neonatal thymus and bone MSCs: Role of SLIT3-ROBO1. Stem Cells Transl Med. doi: 10.1002/sctm.19-0448.
  8. Khatiwada, P. et al. (2020). Androgen up-regulation of Twist1 gene expression is mediated by ETV1. PeerJ. 8:e8921. doi: 10.7717/peerj.8921 (#CBA-101).
  9. Ali, R. et al. (2019). PARP1 blockade is synthetically lethal in XRCC1 deficient sporadic epithelial ovarian cancers. Cancer Lett. pii: S0304-3835(19)30538-5. doi: 10.1016/j.canlet.2019.10.035 (#CBA-100).
  10. Rockfield, S. et al. (2019). Chronic iron exposure and c-Myc/H-ras-mediated transformation in fallopian tube cells alter the expression of EVI1, amplified at 3q26.2 in ovarian cancer. Oncogenesis. 8(9):46. doi: 10.1038/s41389-019-0154-y (#CBA-100).
  11. Chu, Y. et al. (2019). Nudt21 regulates the alternative polyadenylation of Pak1 and is predictive in the prognosis of glioblastoma patients. Oncogene. doi: 10.1038/s41388-019-0714-9 (#CBA-100).
  12. Wagner, G. et al. (2019). High Mobility Group Box 1 Protein in Osteoarthritic Knee Tissue and Chondrogenic Progenitor Cells: An Ex Vivo and In Vitro Study. Cartilage. 1947603519835897. doi: 10.1177/1947603519835897 (#CBA-100).
  13. Chetty, S.S. et al. (2019). Noninvasive Tracking and Regenerative Capabilities of Transplanted Human Umbilical Cord-Derived Mesenchymal Stem Cells Labeled with I-III-IV Semiconducting Nanocrystals in Liver-Injured Living Mice. ACS Appl Mater Interfaces. 11(9):8763-8778. doi: 10.1021/acsami.8b19953 (#CBA-100).
  14. Tam, J. et al. (2019). Skin Microcolumns as a Source of Paracrine Signaling Factors. Adv Wound Care. doi: 10.1089/wound.2019.1045 (#CBA-101).
  15. Fledrich, R. et al. (2019). NRG1 type I dependent autoparacrine stimulation of Schwann cells in onion bulbs of peripheral neuropathies. Nat Commun. 10(1):1467. doi: 10.1038/s41467-019-09385-6 (#CBA-101).
  16. Poulard, C. et al. (2018). Increasing G9a automethylation sensitizes B acute lymphoblastic leukemia cells to glucocorticoid-induced death. Cell Death Dis. 9(10):1038. doi: 10.1038/s41419-018-1110-z (#CBA-100).
  17. Wang, H.L. et al. (2018). Bulnesia sarmientoi Supercritical Fluid Extract Exhibits Necroptotic Effects and Anti-Metastatic Activity on Lung Cancer Cells. Molecules. 23(12). pii: E3304. doi: 10.3390/molecules23123304.
  18. Vay, S.U. et al. (2018). The plasticity of primary microglia and their multifaceted effects on endogenous neural stem cells in vitro and in vivo. J Neuroinflammation. 15(1):226. doi: 10.1186/s12974-018-1261-y (#CBA-100).
  19. Orbay, H. et al. (2018). Fat Graft Safety after Oncologic Surgery: Addressing the Contradiction between In Vitro and Clinical Studies. Plast Reconstr Surg. 142(6):1489-1499. doi: 10.1097/PRS.0000000000004992 (#CBA-101).
  20. Bezhaeva, T. et al. (2018). Relaxin receptor deficiency promotes vascular inflammation and impairs outward remodeling in arteriovenous fistulas. FASEB J. fj201800437R. doi: 10.1096/fj.201800437R (#CBA-101).
  21. Choi, S.I. et al. (2017). Osteopontin production by TM4SF4 signaling drives a positive feedback autocrine loop with the STAT3 pathway to maintain cancer stem cell-like properties in lung cancer cells. Oncotarget. 8(60):101284-101297. doi: 10.18632/oncotarget.21021 (#CBA-100).
  22. Morgillo, F. et al. (2017). Phosphatidylinositol 3-kinase (PI3Kα)/AKT axis blockade with taselisib or ipatasertib enhances the efficacy of anti-microtubule drugs in human breast cancer cells. Oncotarget. 8(44):76479-76491. doi: 10.18632/oncotarget.20385 (#CBA-101).
  23. Ibrahim, S.A. et al. (2016). Cancer derived peptide of vacuolar ATPase 'a2' isoform promotes neutrophil migration by autocrine secretion of IL-8. Sci. Rep. 6:36865 (#CBA-101).
  24. Banerjee, D. et al. (2015). Notch suppresses angiogenesis and progression of hepatic metastases. Cancer Res. 75:1592-1602 (#CBA-101).
  25. Słoniecka, M. et al. (2015). Substance P enhances keratocyte migration and neutrophil recruitment through interleukin-8. Mol Pharmacol. doi:10.1124/mol.115.101014 (#CBA-101).
  26. Izhak, L. et al. (2010). Predominant Expression of CCL2 at the Tumor Site of Prostate Cancer Patients Directs a Selective Loss of Immunological Tolerance to CCL2 that Could be Amplified in a Beneficial Manner.J. Immunol.184:1092-1101 (#CBA-101).
  27. Izhak, L. et al. (2009). A Novel Recombinant Fusion Protein Encoding a 20-Amino Acid Residue of the Third Extracellular (E3) Domain of CCR2 Neutralizes the Biological Activity of CCL2. J. Immunol. 183:732-739 (#CBA-101).
  28. Wang, W. et al. (2009). Netrin-1 Increases Proliferation and Migration of Renal Proximal Tubular Epithelial Cells via the UNC5B Receptor.Am. J. Physiol. Renal Physiol. 296:F723-729 (#CBA-101).
  29. Reing, J. et al. (2008). Degradation Products of Extracellular Matrix Affect Cell Migration and Proliferation. Tissue Eng. Part A 10.1089/ten.tea.2007.0425 (#CBA-101).
  30. Fava, G. et al. (2008). Leptin Enhances Cholangiocarcinoma Cell Growth. Cancer Res. 68:6752-6761 (#CBA-101).