8 µm Chemotaxis Assays, 24-Well Format

8 µm Chemotaxis Assays, 24-Well Format
  • Fully quantify chemotaxis with no manual cell counting
  • Measure chemotaxis in less than 6 hours with most cell types
  • Membrane inserts are uncoated to allow use with any chemoattractant
  • Colorimetric or fluorometric detection

 

Frequently Asked Questions about this product

General FAQs about Chemotaxis Assays

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

CytoSelect™ 24-Well Cell Migration Assay, 8 μm
Catalog Number
CBA-100
Size
12 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$445.00
CytoSelect™ 24-Well Cell Migration Assay, 8 μm
Catalog Number
CBA-101
Size
12 assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$455.00
CytoSelect™ 24-Well Cell Migration Assay, 8 μm
Catalog Number
CBA-100-5
Size
5 x 12 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$2,035.00
CytoSelect™ 24-Well Cell Migration Assay, 8 μm
Catalog Number
CBA-101-5
Size
5 x 12 assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$2,065.00
CytoSelect™ 24-Well Cell Migration Assay, 8 µm, Trial Size
Catalog Number
CBA-100-T
Size
4 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$220.00
CytoSelect™ 24-Well Cell Migration Assay, 8 µm, Trial Size
Catalog Number
CBA-101-T
Size
4 assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$225.00
Product Details

Chemotaxis describes the movement of cells toward or away from a chemical stimulus in their enviroment. Cell chemotaxis plays a pivotal role in the progression of cancer and other diseases.

CytoSelect™ Cell Migration Assays are ideal for determining the chemotactic properties of cells. The 8 µm pore size is suitable for most cell types including epithelial cells, fibroblasts, and cancer cell lines.

CytoSelect™ Chemotaxis Assay Principle. Migratory cells move through the polycarbonate membrane toward a chemoattractant underneath the membrane inserts.

Migration of Human Fibrosarcoma HT-1080 Cells. Cells were seeded at 30,000 cells per well of a 24-well plate and allowed to migrate toward 10% FBS for 4 hours in either the presence or absence of 2µM Cytochalasin D. Migratory cells on the bottom of the polycarbonate membrane were stained (top) and quantified in a fluorescence plate reader (bottom).

Recent Product Citations
  1. Pande, R. et al. (2021). Hsa-miR-605 regulates the proinflammatory chemokine CXCL5 in complex regional pain syndrome. Biomed Pharmacother. 140:111788. doi: 10.1016/j.biopha.2021.111788 (#CBA-101).
  2. Zacharias, N.M. et al. (2021). Prolyl Hydroxylase 3 Knockdown Accelerates VHL-Mutant Kidney Cancer Growth In Vivo. Int J Mol Sci. 22(6):2849. doi: 10.3390/ijms22062849 (#CBA-100).
  3. Ogawa, H. et al. (2021). Lenvatinib prevents liver fibrosis by inhibiting hepatic stellate cell activation and sinusoidal capillarization in experimental liver fibrosis. J Cell Mol Med. doi: 10.1111/jcmm.16363 (#CBA-100).
  4. Zhu, S. et al. (2021). Ceramide kinase mediates intrinsic resistance and inferior response to chemotherapy in triple-negative breast cancer by upregulating Ras/ERK and PI3K/Akt pathways. Cancer Cell Int. 21(1):42. doi: 10.1186/s12935-020-01735-5 (#CBA-100).
  5. Royer-Pokora, B. et al. (2020). Comprehensive Biology and Genetics Compendium of Wilms Tumor Cell Lines with Different WT1 Mutations. Cancers (Basel). 13(1):E60. doi: 10.3390/cancers13010060 (#CBA-100).
  6. Singh, S. et al. (2020). Endothelial-specific Loss of IFT88 Promotes Endothelial-to-Mesenchymal Transition and Exacerbates Bleomycin-induced Pulmonary Fibrosis. Sci Rep. 10(1):4466. doi: 10.1038/s41598-020-61292-9 (#CBA-101).
  7. Paik, E.S. et al. (2020). Preclinical assessment of the VEGFR inhibitor axitinib as a therapeutic agent for epithelial ovarian cancer. Sci Rep. 10(1):4904. doi: 10.1038/s41598-020-61871-w (#CBA-100).
  8. Fouché, M. et al. (2020). Wound Healing Effects of Aloe muth-muth: In Vitro Investigations Using Immortalized Human Keratinocytes (HaCaT). Biology (Basel). 9(11):E350. doi: 10.3390/biology9110350 (#CBA-100).
  9. Pinto, N. et al. (2020). Flavopiridol causes cell cycle inhibition and demonstrates anti-cancer activity in anaplastic thyroid cancer models. PLoS One. 15(9):e0239315. doi: 10.1371/journal.pone.0239315 (#CBA-100). 
  10. Jun, J.H. et al. (2020). Regulation of Ras homolog family member G by microRNA-124 regulates proliferation and migration of human retinal pigment epithelial cells. Sci Rep. 10(1):15420. doi: 10.1038/s41598-020-72360-5 (#CBA-100). 
  11. Chen, J. et al. (2020). Regulation of keratocyte phenotype and cell behavior by substrate stiffness. ACS Biomater Sci Eng. doi: 10.1021/acsbiomaterials.0c00510 (#CBA-100).
  12. Kwon, S. et al. (2020). Biomarkers to quantify cell migration characteristics. Cancer Cell Int. 20:217. doi: 10.1186/s12935-020-01312-w (#CBA-100).
  13. Oh, J.M. et al. (2020). U1 snRNP regulates cancer cell migration and invasion in vitro. Nat Commun. 11(1):1. doi: 10.1038/s41467-019-13993-7 (#CBA-100).
  14. Vay, S.U. et al. (2020). The impact of hyperpolarization-activated cyclic nucleotide-gated (HCN) and voltage-gated potassium KCNQ/Kv7 channels on primary microglia function. J Neuroinflammation. 17(1):100. doi: 10.1186/s12974-020-01779-4 (#CBA-100).
  15. Nyiramana, M.M. et al. (2020). Sea Hare Hydrolysate-Induced Reduction of Human Non-Small Cell Lung Cancer Cell Growth through Regulation of Macrophage Polarization and Non-Apoptotic Regulated Cell Death Pathways. Cancers. 12:726. doi: 10.3390/cancers12030726 (#CBA-100).
  16. Zheng, Q. et al. (2020). Cytotoxicity of amide-linked local anesthetics on melanoma cells via inhibition of Ras and RhoA signaling independent of sodium channel blockade. BMC Anesthesiol. 20(1):43. doi: 10.1186/s12871-020-00957-4 (#CBA-100).
  17. Chen, J. et al. (2020). Inhibition of arachidonate lipoxygenase12 targets lung cancer through inhibiting EMT and suppressing RhoA and NF-κB activity. Biochem Biophys Res Commun. pii: S0006-291X(20)30251-5. doi: 10.1016/j.bbrc.2020.01.166 (#CBA-100).
  18. Wang, S. et al. (2020). Tissue-specific angiogenic and invasive properties of human neonatal thymus and bone MSCs: Role of SLIT3-ROBO1. Stem Cells Transl Med. doi: 10.1002/sctm.19-0448 (#CBA-101).
  19. Khatiwada, P. et al. (2020). Androgen up-regulation of Twist1 gene expression is mediated by ETV1. PeerJ. 8:e8921. doi: 10.7717/peerj.8921 (#CBA-101).
  20. Tam, J. et al. (2019). Skin Microcolumns as a Source of Paracrine Signaling Factors. Adv Wound Care. doi: 10.1089/wound.2019.1045 (#CBA-101).
  21. Fledrich, R. et al. (2019). NRG1 type I dependent autoparacrine stimulation of Schwann cells in onion bulbs of peripheral neuropathies. Nat Commun. 10(1):1467. doi: 10.1038/s41467-019-09385-6 (#CBA-101).
  22. Orbay, H. et al. (2018). Fat Graft Safety after Oncologic Surgery: Addressing the Contradiction between In Vitro and Clinical Studies. Plast Reconstr Surg. 142(6):1489-1499. doi: 10.1097/PRS.0000000000004992 (#CBA-101).
  23. Bezhaeva, T. et al. (2018). Relaxin receptor deficiency promotes vascular inflammation and impairs outward remodeling in arteriovenous fistulas. FASEB J. fj201800437R. doi: 10.1096/fj.201800437R (#CBA-101).
  24. Morgillo, F. et al. (2017). Phosphatidylinositol 3-kinase (PI3Kα)/AKT axis blockade with taselisib or ipatasertib enhances the efficacy of anti-microtubule drugs in human breast cancer cells. Oncotarget. 8(44):76479-76491. doi: 10.18632/oncotarget.20385 (#CBA-101).
  25. Ibrahim, S.A. et al. (2016). Cancer derived peptide of vacuolar ATPase 'a2' isoform promotes neutrophil migration by autocrine secretion of IL-8. Sci. Rep. 6:36865 (#CBA-101).
  26. Banerjee, D. et al. (2015). Notch suppresses angiogenesis and progression of hepatic metastases. Cancer Res. 75:1592-1602 (#CBA-101).
  27. Słoniecka, M. et al. (2015). Substance P enhances keratocyte migration and neutrophil recruitment through interleukin-8. Mol Pharmacol. doi:10.1124/mol.115.101014 (#CBA-101).
  28. Izhak, L. et al. (2010). Predominant Expression of CCL2 at the Tumor Site of Prostate Cancer Patients Directs a Selective Loss of Immunological Tolerance to CCL2 that Could be Amplified in a Beneficial Manner.J. Immunol.184:1092-1101 (#CBA-101).
  29. Izhak, L. et al. (2009). A Novel Recombinant Fusion Protein Encoding a 20-Amino Acid Residue of the Third Extracellular (E3) Domain of CCR2 Neutralizes the Biological Activity of CCL2. J. Immunol. 183:732-739 (#CBA-101).
  30. Wang, W. et al. (2009). Netrin-1 Increases Proliferation and Migration of Renal Proximal Tubular Epithelial Cells via the UNC5B Receptor.Am. J. Physiol. Renal Physiol. 296:F723-729 (#CBA-101).