8-iso-Prostaglandin F2a Assay

8-iso-Prostaglandin F2a Assay
  • Quantify 8-isoprostane in about 3 hours
  • Suitable for use with urine, plasma, serum, or cell lysates
  • 8-iso-PGF2alpha included as positive control

 

Frequently Asked Questions about this product

General FAQs about Oxidative Stress

Video: Color Development in an ELISA

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

OxiSelect™ 8-iso-Prostaglandin F2a ELISA Kit
Catalog Number
STA-337
Size
96 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$505.00
OxiSelect™ 8-iso-Prostaglandin F2a ELISA Kit
Catalog Number
STA-337-5
Size
5 x 96 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$2,195.00
Product Details

8-iso-Prostaglandin F2alpha (8-isoprostane) is a stable by-product of lipid peroxides generated during oxidative stress. Our OxiSelect™ 8-Isoprostane Assay Kit provides a convenient method for absolute quantitation in just a few hours. The 8-Isoprostane ELISA is suitable for a variety of sample types including urine, plasma, and cell lysates.

Dilutions of Human Urine Tested with the OxiSelect™ 8-iso-Prostaglandin F2alpha ELISA Kit.

Recent Product Citations
  1. Cao, N. et al. (2022). The Activated AMPK/mTORC2 Signaling Pathway Associated with Oxidative Stress in Seminal Plasma Contributes to Idiopathic Asthenozoospermia. Oxid Med Cell Longev. doi: 10.1155/2022/4240490.
  2. Tsunenaga, M. et al. (2022). Modulating effects of oral administration of Lycii Fructus extracts on UVB-induced skin erythema: A Randomized, placebo-controlled study. Biomed Rep. 17(1):62. doi: 10.3892/br.2022.1545.
  3. Hoferichter, F. & Raufelder, D. (2022). Biophysiological stress markers relate differently to grit and school engagement among lower- and higher-track secondary school students. Br J Educ Psychol. doi: 10.1111/bjep.12514.
  4. Makris, K.C. et al. (2022). Oxidative stress of glyphosate, AMPA and metabolites of pyrethroids and chlorpyrifos pesticides among primary school children in Cyprus. Environ Res. 212(Pt B):113316. doi: 10.1016/j.envres.2022.113316.
  5. Maciejczyk, M. et al. (2022). α-Lipoic Acid Strengthens the Antioxidant Barrier and Reduces Oxidative, Nitrosative, and Glycative Damage, as well as Inhibits Inflammation and Apoptosis in the Hypothalamus but Not in the Cerebral Cortex of Insulin-Resistant Rats. Oxid Med Cell Longev. doi: 10.1155/2022/7450514.
  6. Cañizo Vázquez, D. et al. (2022). Oxidative Stress and Indicators of Brain Damage Following Pediatric Heart Surgery. Antioxidants (Basel). 11(3):489. doi: 10.3390/antiox11030489.
  7. Konstantinou, C. et al. (2022). Use of metabolomics in refining the effect of an organic food intervention on biomarkers of exposure to pesticides and biomarkers of oxidative damage in primary school children in Cyprus: A cluster-randomized cross-over trial. Environ Int. doi: 10.1016/j.envint.2021.107008.
  8. Kumar, P. et al. (2021). Severe Glutathione Deficiency, Oxidative Stress and Oxidant Damage in Adults Hospitalized with COVID-19: Implications for GlyNAC (Glycine and N-Acetylcysteine) Supplementation. Antioxidants (Basel). 11(1):50. doi: 10.3390/antiox11010050.
  9. De La Cruz Cortés, J.P. et al. (2021). Synergistic Effect of 3′,4′-Dihidroxifenilglicol and Hydroxytyrosol on Oxidative and Nitrosative Stress and Some Cardiovascular Biomarkers in an Experimental Model of Type 1 Diabetes Mellitus. Antioxidants. 10(12):1983. doi: 10.3390/antiox10121983.
  10. Baxevanis, G.K. et al (2021). Tahini consumption improves metabolic and antioxidant status biomarkers in the postprandial state in healthy males. Eur Food Res Technol. doi: 10.1007/s00217-021-03828-5.
  11. Jacobson, M.H. et al. (2021). Organophosphate pesticides and progression of chronic kidney disease among children: A prospective cohort study. Environ Int. 155:106597. doi: 10.1016/j.envint.2021.106597.
  12. Kumar, P. et al. (2021). Glycine and N-acetylcysteine (GlyNAC) supplementation in older adults improves glutathione deficiency, oxidative stress, mitochondrial dysfunction, inflammation, insulin resistance, endothelial dysfunction, genotoxicity, muscle strength, and cognition: Results of a pilot clinical trial. Clin Transl Med. 11(3):e372. doi: 10.1002/ctm2.372.
  13. Szymańska, B. et al (2020). The Dependence between Urinary Levels of Angiogenesis Factors, 8-Iso-prostaglandin F2α, ɣ-Synuclein, and Interleukin-13 in Patients with Bladder Cancer: A Pilot Study. J Oncol. doi: 10.1155/2020/4848752.
  14. Headley, S.A. et al. (2020). The effects of 16-weeks of prebiotic supplementation and aerobic exercise training on inflammatory markers, oxidative stress, uremic toxins, and the microbiota in pre-dialysis kidney patients: a randomized controlled trial-protocol paper. BMC Nephrol. 21(1):517. doi: 10.1186/s12882-020-02177-x.
  15. Jacobson, M.H. et al. (2020). Serially assessed bisphenol A and phthalate exposure and association with kidney function in children with chronic kidney disease in the US and Canada: A longitudinal cohort study. PLoS Med. 17(10):e1003384. doi: 10.1371/journal.pmed.1003384.
  16. Agudelo, C.D. et al. (2020). Fermented Non-Digestible Fraction of Andean Berry (Vaccinium meridionale Swartz) Juice Induces Apoptosis in Colon Adenocarcinoma Cells. Prev Nutr Food Sci. 25(3):272-279. doi: 10.3746/pnf.2020.25.3.272.
  17. Kumar, P. et al. (2020). Supplementing Glycine and N-acetylcysteine (GlyNAC) in Aging HIV Patients Improves Oxidative Stress, Mitochondrial Dysfunction, Inflammation, Endothelial Dysfunction, Insulin Resistance, Genotoxicity, Strength, and Cognition: Results of an Open-Label Clinical Trial. Biomedicines. 8(10):E390. doi: 10.3390/biomedicines8100390.
  18. Gao, D. et al. (2020). In Vivo AAV Delivery of Glutathione Reductase Gene Attenuates Anti-aging Gene Klotho Deficiency-induced Kidney Damage. Redox Biol. doi: 10.1016/j.redox.2020.101692.
  19. Marín-Echeverri,C. et al. (2020). Differential Effects of Agraz (Vaccinium meridionale Swartz) Consumption in Overweight and Obese Women with Metabolic Syndrome. Journal of Food and Nutrition Research. 8(8):399-409. doi: 10.12691/jfnr-8-8-3.
  20. Scarcello, E. et al. (2020). Amelioration of murine experimental colitis using biocompatible cyclosporine A lipid carriers. Drug Deliv Transl Res. doi: 10.1007/s13346-020-00835-z.
  21. Wadsworth, D. et al. (2020). Randomised control study of oxidative stress in whole body vibration exercise. JSES. 4(1):44-52. doi: 10.36905/jses.2020.01.07.
  22. Rawat, M. et al. (2020). Optimal Oxygen Targets in Term Lambs with Meconium Aspiration Syndrome and Pulmonary Hypertension. Am J Respir Cell Mol Biol. doi: 10.1165/rcmb.2019-0449OC.
  23. Mistry, R.J. et al. (2020). Nicotinamide N-methyltransferase expression in SH-SY5Y human neuroblastoma cells decreases oxidative stress. J Biochem Mol Toxicol. doi: 10.1002/jbt.22439.
  24. Rangarajan, S. et al. (2019). COX-2 derived prostaglandins as mediators of the deleterious effects of nicotine in chronic kidney disease. Am J Physiol Renal Physiol. doi: 10.1152/ajprenal.00407.2019.
  25. Ehnert-Russo, S.L. et al. (2019). Mercury Accumulation and Effects in the Brain of the Atlantic Sharpnose Shark (Rhizoprionodon terraenovae). Arch Environ Contam Toxicol. doi: 10.1007/s00244-019-00691-0.
  26. Sripetchwandee, J. et al. (2019). Deferiprone and efonidipine mitigated iron-overload induced neurotoxicity in wild-type and thalassemic mice. Life Sci. 239:116878. doi: 10.1016/j.lfs.2019.116878.
  27. Lee, C.H. et al. (2019). Impact of Oxidative Stress on Long-Term Heart Rate Variability: Linear Versus Non-Linear Heart Rate Dynamics. Heart Lung Circ. doi: 10.1016/j.hlc.2019.06.726.
  28. Kopacz, A. et al. (2019). Keap1 controls protein S-nitrosation and apoptosis-senescence switch in endothelial cells. Redox Biology. doi:10.1016/j.redox.2019.101304.
  29. Carneiro, M.F.H. et al. (2019). Gold-Coated Superparamagnetic Iron Oxide Nanoparticles Attenuate Collagen-Induced Arthritis after Magnetic Targeting. Biol Trace Elem Res. doi: 10.1007/s12011-019-01799-z.
  30. Elvira-Torales, L.I. et al. (2019). Ameliorative Effect of Spinach on Non-Alcoholic Fatty Liver Disease Induced in Rats by a High-Fat Diet. Int J Mol Sci. 20(7). pii: E1662. doi: 10.3390/ijms20071662.