Cdc42 Activation Assays

Cdc42 Activation Assays
  • Safe non-radioactive assay format
  • Colored agarose beads allow visual check
  • Fast results: 1 hour plus electrophoresis/blotting time
  • Compatible with human, mouse, and rat samples

 

Frequently Asked Questions about this product

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

Cdc42 Activation Assay
Catalog Number
STA-402
Size
20 assays
Detection
Immunoblot
Manual/Data Sheet Download
SDS Download
Price
$625.00
RhoA/Rac1/Cdc42 Activation Assay Combo Kit
Catalog Number
STA-405
Size
3 x 10 assays
Detection
Immunoblot
Manual/Data Sheet Download
SDS Download
Price
$920.00
Rac1/Cdc42 Activation Assay Combo Kit
Catalog Number
STA-404
Size
2 x 20 assays
Detection
Immunoblot
Manual/Data Sheet Download
SDS Download
Price
$920.00
Cdc42 Activation Assay Kit, Trial Size
Catalog Number
STA-402-T
Size
5 assays
Detection
Immunoblot
Manual/Data Sheet Download
SDS Download
Price
$310.00
Product Details

Our Cdc42 Activation Assays use visible agarose beads to selectively precipitate the active form of Cdc42 protein. The precipitated small GTPase is then detected by Western blot using a Cdc42-specific antibody included in the kit.

If you are also studying Rac1 or RhoA, you may consider one of our economical combination kits.

Small GTPase Activation Assay Principle

Immunoblotting with the Rac Activation Assay. Lane 1: GTPase Immunoblot Positive Control. Lane 2: 293 cell lysate loaded with GDP and incubated with PAK1 PBD Agarose beads. Lane 3: 293 cell lysate loaded with GTPγS and incubated with PAK1 PBD Agarose beads.

Recent Product Citations
  1. Rajakylä, E.K. et al. (2020). Assembly of Peripheral Actomyosin Bundles in Epithelial Cells Is Dependent on the CaMKK2/AMPK Pathway. Cell Rep. 30(12):4266-4280.e4. doi: 10.1016/j.celrep.2020.02.096 (#STA-405).
  2. Hirano, T. et al. (2020). FARP1 boosts CDC42 activity from integrin αvβ5 signaling and correlates with poor prognosis of advanced gastric cancer. Oncogenesis. 9(2):13. doi: 10.1038/s41389-020-0190-7 (#STA-405).
  3. McGuire, S. et al. (2019). Inhibition of fascin in cancer and stromal cells blocks ovarian cancer metastasis. Gynecol Oncol. pii: S0090-8258(19)30059-9. doi: 10.1016/j.ygyno.2019.01.020 (#STA-402).
  4. Mohapatra, P. et al. (2019). Combination therapy targeting the elevated interleukin-6 level reduces invasive migration of BRAF inhibitor-resistant melanoma cells. Mol Oncol. 13(2):480-494. doi: 10.1002/1878-0261.12433 (#STA-404).
  5. Nicolas, S. et al. (2019). Hypoxia and EGF Stimulation Regulate VEGF Expression in Human Glioblastoma Multiforme (GBM) Cells by Differential Regulation of the PI3K/Rho-GTPase and MAPK Pathways. Cells. 8(11). pii: E1397. doi: 10.3390/cells8111397 (#STA-405).
  6. Fostok, S. et al. (2019). Connexin 43 Loss Triggers Cell Cycle Entry and Invasion in Non-Neoplastic Breast Epithelium: A Role for Noncanonical Wnt Signaling. Cancers (Basel). 11(3). pii: E339. doi: 10.3390/cancers11030339 (#STA-405).
  7. El Atat, O. et al. (2019). RHOG Activates RAC1 through CDC42 Leading to Tube Formation in Vascular Endothelial Cells. Cells. 8(2). pii: E171. doi: 10.3390/cells8020171 (#STA-405).
  8. Kim, D. et al. (2019). Lysophosphatidic acid increases mesangial cell proliferation in models of diabetic nephropathy via Rac1/MAPK/KLF5 signaling. Exp Mol Med. 51(2):18. doi: 10.1038/s12276-019-0217-3 (#STA-405).
  9. Hu, H.F. et al. (2018). Comparative Proteomics Analysis Identifies Cdc42-Cdc42BPA Signaling as Prognostic Biomarker and Therapeutic Target for Colon Cancer Invasion. J Proteome Res. 17(1):265-275. doi: 10.1021/acs.jproteome.7b00550 (#STA-402).
  10. Zhang, F. et al. (2018). GAP43, a novel metastasis promoter in non-small cell lung cancer. J Transl Med. 16(1):310. doi: 10.1186/s12967-018-1682-5 (#STA-405).
  11. Chen, Z.S. et al. (2018). Planar cell polarity gene Fuz triggers apoptosis in neurodegenerative disease models. EMBO Rep. 19(9). pii: e45409. doi: 10.15252/embr.201745409 (#STA-405).
  12. Stocker, T.J. et al. (2018). The Actin Regulator Coronin-1A Modulates Platelet Shape Change and Consolidates Arterial Thrombosis. Thromb Haemost. 118(12):2098-2111. doi: 10.1055/s-0038-1675604 (#STA-404).
  13. Khanna, P. et al. (2018). GRAMD1B regulates cell migration in breast cancer cells through JAK/STAT and Akt signaling. Sci Rep. 8(1):9511. doi: 10.1038/s41598-018-27864-6 (#STA-404).
  14. Chang, F. et al. (2017). MTA promotes chemotaxis and chemokinesis of immune cells through distinct calcium-sensing receptor signaling pathways. Biomaterials. 150:14-24. doi: 10.1016/j.biomaterials.2017.10.009 (#STA-402).
  15. Schiapparelli, P. et al. (2017). NKCC1 regulates migration ability of glioblastoma cells by modulation of actin dynamics and interacting with cofilin. EBioMedicine. doi: 10.1016/j.ebiom.2017.06.020 (#STA-405).
  16. Hong, J. H. et al. (2016). Regulation of the actin cytoskeleton by the Ndel1-Tara complex is critical for cell migration. Sci Rep. doi:10.1038/srep31827 (#STA-402).
  17. Aldinucci, A. et al. (2016). Histamine regulates actin cytoskeleton in human Toll like receptor 4 activated monocyte derived dendritic cells tuning CD4+ T lymphocyte response. J Biol Chem. doi:10.1074/jbc.M116.720680 (#STA-402).
  18. Tanaka, U. et al. (2015). Sprouty2 inhibition promotes proliferation and migration of periodontal ligament cells. Oral Dis. doi: 10.1111/odi.12369 (#STA-404).
  19. Sherchan, P. et al. (2015). Recombinant Slit2 attenuates neuroinflammation after surgical brain injury by inhibiting peripheral immune cell infiltration via Robo1-srGAP1 pathway in a rat model. Neurobiol Dis. 85:164-173 (#STA-402).
  20. Galic, M. et al. (2014). Dynamic Recruitment of the Curvature-Sensitive Protein ArhGAP44 to Nanoscale Membrane Deformations Limits Exploratory Filopodia Initiation in Neurons. Elife. doi: 10.7554/eLife.03116 (#STA-404).
  21. Sahu, M. et al. (2014). Lens specific RLIP76 transgenic mice show a phenotype similar to microphthalmiaExp Eye Res. 118:125-134 (#STA-402).
  22. El-Sayed, F.G. et al. (2014).  P2Y2 Nucleotide Receptor Activation Enhances the Aggregation and Self-Organization of Dispersed Salivary Epithelial Cells.  Am J Physiol Cell Physiol. 307: C83-C96 (#STA-402).
  23. He, S. et al. (2013). SRGAP1 Is a Candidate Gene for Papillary Thyroid Carcinoma Susceptibility. J. Clin. Endocrinol. Metab. 98:E973-E980 (#STA-402).
  24. Holmes,K.M. et al.(2012).Insulin-Like Growth Factor-Binding Protein 2-Driven Glioma Progression is Prevented by Blocking a Clinically Significant Integrin, Integrin-Linked Kinase, and NF-B Network. Proc Natl Acad Sci . 109:2168-2173 (#STA-404).
  25. Chen, H. et al. (2010). Integrity of SOS1/EPS8/ABI1 Tri-Complex Determines Ovarian Cancer Metastasis. Cancer Res. 70:9979-9990 (#STA-404).
  26. Sultana, H. et al. (2010). Anaplasma phagocytophilum induces actin phosphorylation to selectively regulate gene transcription in Ixodes scapularis ticks. J. Exp. Med. 10.1084/jem.20100276 (#STA-404).
  27. Pandey, D. et al. (2009). Unraveling a novel Rac1-mediated signaling pathway that regulates cofilin dephosphorylation and secretion in thrombin stimulated platelets. Blood. 114:415-424 (#STA-404).
  28. Zhang, S. et al. (2008). The Tumor Suppressor LKB1 Regulates Lung Cancer Cell Polarity by  Mediating Cdc42 Recruitment and Activity. Cancer Res. 68:740-748 (#STA-402).
  29. Somervaille, T. et al. (2006). Identification and Characterization of Leukemia Stem Cells in Murine MLL-AF9 Acute Myeloid Leukemia. Cancer Cell 10:257-268 (#STA-402).
  30. Lorger, M. et al. (2006). Regulation of epithelial wound closure and intercellular adhesion by interaction of AF6 with actin cytoskeleton. J. of Cell Science. 119:3385-3398 (#STA-404).