Cellular Senescence Flow Cytometry Assay

Cellular Senescence Flow Cytometry Assay
  • Uses a fluorogenic substrate to measure senescence-associated ß-galactosidase activity
  • Assay performed in a standard 35 mm culture dish

 

Frequently Asked Questions about this product

General FAQs about Cellular Senescence Assays

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

Quantitative Cellular Senescence Assay (SA β-Gal)
Catalog Number
CBA-232
Size
10 assays
Detection
Fluorescence Microscopy / Flow Cytometry
Manual/Data Sheet Download
SDS Download
Price
$360.00
Quantitative Cellular Senescence Assay (SA β-Gal)
Catalog Number
CBA-232-5
Size
5 x 10 assays
Detection
Fluorescence Microscopy / Flow Cytometry
Manual/Data Sheet Download
SDS Download
Price
$1,550.00
Product Details

Our Cellular Senescence Flow Cytometry Assay provides an efficient method to measure Senescence Associated (SA) ß-galactosidase activity. A fluorogenic substrate is added directly to senescent cells in a 35 mm dish. Results can be measured by either flow cytometry or epifluorescence microscope.

Recent Product Citations
  1. Augimeri, G. et al. (2023). A hybrid breast cancer/mesenchymal stem cell population enhances chemoresistance and metastasis. JCI Insight. doi: 10.1172/jci.insight.164216.
  2. Park, S. Y. et al. (2023). Gold nanoparticle encoded with Marigold (Tagetes erecta L.) suppressed hyperglycemia -induced senescence in retinal pigment epithelium via suppression of lipid peroxidation. Arab. J. Chem. doi: 10.1016/j.arabjc.2023.105120.
  3. Viganò, L. et al. (2022). Modulation of the estrogen/erbB2 receptors crosstalk by CDK4/6 inhibition triggers sustained senescence in estrogen receptor and erbB2 positive breast cancer. Clin Cancer Res. doi: 10.1158/1078-0432.CCR-21-3185.
  4. Okawa, R. et al. (2022). The effects of continuous exposure to low-dose chlorine dioxide gas on the characteristics of induced pluripotent stem cells. Regen Ther. 21:250-257. doi: 10.1016/j.reth.2022.07.014.
  5. Cho, E. et al. (2021). Reelin Alleviates Mesenchymal Stem Cell Senescence and Reduces Pathological α-Synuclein Expression in an In Vitro Model of Parkinson’s Disease. Genes. 12(7):1066. doi: 10.3390/genes12071066.
  6. Nishizawa, H. et al. (2021). Lipid peroxidation and the subsequent cell death transmitting from ferroptotic cells to neighboring cells. Cell Death Dis. 12(4):332. doi: 10.1038/s41419-021-03613-y.
  7. Martini, H. et al. (2021). Selective Cardiomyocyte Oxidative Stress Leads to Bystander Senescence of Cardiac Stromal Cells. Int. J. Mol. Sci. 22(5):2245. doi: 10.3390/ijms22052245.
  8. Rothmiller, S. et al. (2021). Chronic senescent human mesenchymal stem cells as possible contributor to the wound healing disorder after exposure to the alkylating agent sulfur mustard. Arch Toxicol. doi: 10.1007/s00204-020-02946-5.
  9. Kim, S.N. et al. (2020). Culturing at Low Cell Density Delays Cellular Senescence of Human Bone Marrow-Derived Mesenchymal Stem Cells in Long-Term Cultures. Int J Stem Cells. doi: 10.15283/ijsc20078.
  10. Jun, E.S. et al. (2020). Gold Nanoparticles Using Ecklonia stolonifera Protect Human Dermal Fibroblasts from UVA-Induced Senescence through Inhibiting MMP-1 and MMP-3. Mar Drugs. 18(9):E433. doi: 10.3390/md18090433.
  11. van den Berg, J. et al. (2020). Development of transient radioresistance during fractionated irradiation in vitro. Radiother Oncol. doi: 10.1016/j.radonc.2020.04.014.
  12. Fessler, J. et al. (2020). Lymphopenia in primary Sjögren's syndrome is associated with premature aging of naïve CD4+ T cells. Rheumatology (Oxford). pii: keaa105. doi: 10.1093/rheumatology/keaa105.
  13. di Martino, S. et al. (2018). HSP90 inhibition alters the chemotherapy-driven rearrangement of the oncogenic secretome. Oncogene. 37(10):1369-1385. doi: 10.1038/s41388-017-0044-8.
  14. Nojima, T. et al. (2018). Deregulated Expression of Mammalian lncRNA through Loss of SPT6 Induces R-Loop Formation, Replication Stress, and Cellular Senescence. Mol Cell. 72(6):970-984.e7. doi: 10.1016/j.molcel.2018.10.011.
  15. Watanabe, J. et al. (2018). Preconditioning of bone marrow-derived mesenchymal stem cells with N-acetyl-L-cysteine enhances bone regeneration via reinforced resistance to oxidative stress. Biomaterials. 185:25-38. doi: 10.1016/j.biomaterials.2018.08.055.
  16. Nagane, M. et al. (2018). Ataxia-Telangiectasia Mutated (ATM) Kinase Regulates eNOS Expression and Modulates Radiosensitivity in Endothelial Cells Exposed to Ionizing Radiation. Radiat Res. 189(5):519-528. doi: 10.1667/RR14781.1.
  17. Poulos, M.G. et al. (2017). Endothelial transplantation rejuvenates aged hematopoietic stem cell function. J Clin Invest. 127(11):4163-4178. doi: 10.1172/JCI93940.
  18. Won, Y.H. et al. (2016). Elucidation of relevant neuroinflammation mechanisms using gene expression profiling in patients with amyotrophic lateral sclerosis. PLoS One 11:e0165290.
  19. Chae, S. Y. et al. (2016). Gardenia jasminoides extract-capped gold nanoparticles reverse hydrogen peroxide-induced premature senescence. J. Photochem Photobiol B.  doi:10.1016/j.jphotobiol.2016.09.033.
  20. Hu, W. et al. (2015). Mechanistic investigation of bone marrow suppression associated with palbociclib and its differentiation from cytotoxic chemotherapies. Clin Cancer Res. doi:10.1158/1078-0432.CCR-15-1421.
  21. Kim, J. et al. (2014) p53 Induces Skin Aging by Depleting Blimp1+ Sebaceous Gland Cells. Cell Death Dis. 5:e1141
  22. Grasso, D. et al. (2014). Genetic Inactivation of the Pancreatitis-Inducible Gene Nupr1 Impairs PanIN Formation by Modulating Kras(G12D)-Induced Senescence. Cell Death Differ. 21:1633-1641.
  23. Landowski, T. H. et al. (2014).  Targeting Integrin α6 Stimulates Curative-Type Bone Metastasis Lesions in a Xenograft Model. Mol Cancer Ther. 13:1558-1566.