Free Fatty Acid (FFA) Assays

Free Fatty Acid (FFA) Assays
  • Measures non-esterified fatty acids (NEFA) in serum or plasma
  • Available with colorimetric or fluorometric detection
  • Standard included for quantitative results
Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

Free Fatty Acid Assay Kit (Colorimetric)
Catalog Number
STA-618
Size
100 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$440.00
Free Fatty Acid Assay Kit (Fluorometric)
Catalog Number
STA-619
Size
100 assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$440.00
Product Details

The Free Fatty Acid Assay Kit contains a palmitic acid standard and is a simple assay that quantitatively measures the free fatty acid (FFA) concentration (non-esterified) in various samples using a 96-well microtiter plate format. Each kit provides sufficient reagents to perform up to 100 assays, including blanks, standards and unknown samples.

Recent Product Citations
  1. Valladolid-Acebes, I. et al. (2021). Lowering apolipoprotein CIII protects against high-fat diet-induced metabolic derangements. Sci Adv. 7(11):eabc2931. doi: 10.1126/sciadv.abc2931 (#STA-618).
  2. Casey, C.A. et al. (2021). Lipid droplet membrane proteome remodeling parallels ethanol-induced hepatic steatosis and its resolution. J Lipid Res. doi: 10.1016/j.jlr.2021.100049 (#STA-618).
  3. Zhang, J. et al. (2020). ADORA1-driven brain-sympathetic neuro-adipose connections control body weight and adipose lipid metabolism. Mol Psychiatry. doi: 10.1038/s41380-020-00908-y (#STA-618).
  4. Kale, M. et al. (2020). Modulates Anxiety and Depression-like Behaviour in Diabetic Insulin-Resistant Rats. Brain Res. doi: 10.1016/j.brainres.2020.147045 (#STA-618).
  5. Miller, C.N. et al. (2019). Fetal growth outcomes following peri-implantation exposure of Long-Evans rats to noise and ozone differ by sex. Biol Sex Differ. 10(1):54. doi: 10.1186/s13293-019-0270-6 (#STA-618).
  6. Henriquez, A.R. et al. (2019). Exacerbation of ozone-induced pulmonary and systemic effects by β2-adrenergic and/or glucocorticoid receptor agonist/s. Sci Rep. 9(1):17925. doi: 10.1038/s41598-019-54269-w (#STA-618).
  7. Martinez, N. et al. (2019). mTORC2/Akt activation in adipocytes is required for adipose tissue inflammation in tuberculosis. EBioMedicine. pii: S2352-3964(19)30433-5. doi: 10.1016/j.ebiom.2019.06.052 (#STA-618).
  8. Matsue, M. et al. (2019). Measuring the Antimicrobial Activity of Lauric Acid against Various Bacteria in Human Gut Microbiota Using a New Method. Cell Transplant. doi: 10.1177/0963689719881366 (#STA-618).
  9. Tillman, M.C. et al. (2019). Structural characterization of life-extending Caenorhabditis elegans Lipid Binding Protein 8. Sci Rep. 9(1):9966. doi: 10.1038/s41598-019-46230-8 (#STA-618).
  10. Miller, C.N. et al. (2019). Ozone Exposure During Implantation Increases Serum Bioactivity in HTR-8/SVneo Trophoblasts. Toxicol Sci. 168(2):535-550. doi: 10.1093/toxsci/kfz003 (#STA-618).
  11. Miller, C.N. et al. (2019). Aspirin pre-treatment modulates ozone-induced fetal growth restriction and alterations in uterine blood flow in rats. Reprod Toxicol. 83:63-72. doi: 10.1016/j.reprotox.2018.12.002 (#STA-618).
  12. Allard, C. et al. (2019). Loss of Nuclear and Membrane Estrogen Receptor-α Differentially Impairs Insulin Secretion and Action in Male and Female Mice. Diabetes. 68(3):490-501. doi: 10.2337/db18-0293 (#STA-618).
  13. Reijnders, D. et al. (2019). Dyslipidemia and the role of the adipose tissue in early pregnancy in the BPH/5 mouse model for preeclampsia. Am J Physiol Regul Integr Comp Physiol. doi: 10.1152/ajpregu.00334.2018 (#STA-618).
  14. El-Shiekh, R.A. et al. (2019). Anti-obesity effect of argel (Solenostemma argel) on obese rats fed a high fat diet. J Ethnopharmacol. 238:111893. doi: 10.1016/j.jep.2019.111893 (#STA-618).
  15. Attia, R.T. et al. (2019). Raspberry ketone and Garcinia Cambogia rebalanced disrupted insulin resistance and leptin signaling in rats fed high fat fructose diet. Biomed Pharmacother. 110:500-509. doi: 10.1016/j.biopha.2018.11.079 (#STA-618).
  16. Paris, H.L. et al. (2019). Effect of carbohydrate ingestion on central fatigue during prolonged running exercise in moderate hypoxia. J Appl Physiol (1985). 126(1):141-151. doi: 10.1152/japplphysiol.00684.2018 (#STA-618).
  17. Xiao, W.C. et al. (2018). Alleviation of palmitic acid-induced endoplasmic reticulum stress by augmenter of liver regeneration through IP3R-controlled Ca2+ release. J Cell Physiol. 233(8):6148-6157. doi: 10.1002/jcp.26463 (#STA-618).
  18. Martin, B.L. et al. (2018). Acute peat smoke inhalation sensitizes rats to the postprandial cardiometabolic effects of a high fat oral load. Sci Total Environ. 643:378-391. doi: 10.1016/j.scitotenv.2018.06.089 (#STA-618).
  19. Tosic, M. et al. (2018). Lsd1 regulates skeletal muscle regeneration and directs the fate of satellite cells. Nat Commun. 9(1):366. doi: 10.1038/s41467-017-02740-5 (#STA-618).
  20. Matuszek, M.A. et al. (2018). Statins Do Not Impair Whole-body Fat Oxidation During Moderate-intensity Exercise in Dyslipidemic Adults. Exerc Med. 2:12. doi: 10.26644/em.2018.012 (#STA-618).
  21. Bolus, W.R. et al. (2018). Elevating adipose eosinophils in obese mice to physiologically normal levels does not rescue metabolic impairments. Mol Metab. 8:86-95. doi: 10.1016/j.molmet.2017.12.004 (#STA-619).
  22. Hyatt, H.W. et al. (2017). Lactation has persistent effects on a mother's metabolism and mitochondrial function. Sci Rep. 7(1):17118. doi: 10.1038/s41598-017-17418-7 (#STA-618).
  23. Miller, C.N. et al. (2017). Uterine Artery Flow and Offspring Growth in Long-Evans Rats following Maternal Exposure to Ozone during Implantation. Environ Health Perspect. 125(12):127005. doi: 10.1289/EHP2019 (#STA-618).
  24. Xiao, X., et al. (2017). Permethrin alters glucose metabolism in conjunction with high fat diet by potentiating insulin resistance and decreases voluntary activities in female C57BL/6J mice. Food Chem Toxicol. 108(Pt A):161-170. doi: 10.1016/j.fct.2017.07.053 (#STA-618).
  25. Passlack, N. et al. (2017). Impact of hyperlipidaemia on intermediary metabolism, faecal microbial metabolites and urinary characteristics of lipoprotein lipase deficient vs. normal cats. J. Anim. Physiol. Anim. Nutr. (Berl). doi: 10.1111/jpn.12721 (#STA-618).
  26. Miller, D. B. et al. (2016). Systemic metabolic derangement, pulmonary effects, and insulin insufficiency following subchronic ozone exposure in rats. Toxicol Appl Pharmacol. doi:10.1016/j.taap.2016.06.027 (#STA-618).
  27. Healy, M. E. et al. (2016). Dietary sugar intake increases liver tumor incidence in female mice. Sci Rep. doi:10.1038/srep22292 (#STA-618).
  28. Nicholas, D. A. et al. (2015). Identification of anti-long chain saturated fatty acid IgG antibodies in serum of patients with type 2 diabetes. Mediators Inflamm. doi:10.1155/2015/196297 (#STA-618).
  29. Kahouli, I. et al. (2015). In-vitro characterization of the anti-cancer activity of the probiotic bacterium Lactobacillus fermentum NCIMB 5221 and potential against colorectal cancer. J Cancer Sci Ther. 7:224-235 (#STA-618).
  30. Ditzel, E. J. et al. (2015). Effects of arsenite exposure during fetal development on energy metabolism and susceptibility to diet-induced fatty liver disease in male mice. Environ Health Perspect. doi:10.1289/ehp.1409501 (#STA-618).