Lentivirus-Associated p24 ELISA Kit

Lentivirus-Associated p24 ELISA Kit
  • Proprietary technology separates virus-associated p24 from free p24
  • Minimizes overestimation of lentivirus titer common to traditional p24 ELISA kits
  • Lentivirus quantitation on a standard microplate reader
  • HIV-1 p24 Standard included

 

Frequently Asked Questions about this product

General FAQs about Viral Gene Delivery

Video: Color Development in an ELISA

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

QuickTiter™ Lentivirus Titer Kit (Lentivirus-Associated HIV p24)
Catalog Number
VPK-107-5
Size
5 x 96 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$2,750.00
QuickTiter™ Lentivirus Titer Kit (Lentivirus-Associated HIV p24)
Catalog Number
VPK-107
Size
96 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$645.00
QuickTiter™ Lentivirus Titer Kit (Lentivirus-Associated HIV p24), Trial Size
Catalog Number
VPK-107-T
Size
32 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$320.00
Product Details

Measuring the HIV-1 p24 antigen is a long-established method for lentivirus quantitation. However, the traditional p24 ELISA detects both virus-associated p24 and free p24 generated by 293 cells during transient transfection. Free p24 can account for a substantial portion of total p24 in the supernatant. Therefore, the ELISA typically overestimates the quantity of lentivirus present.

Our QuickTiter™ Lentivirus Titer Kit (Lentivirus-Associated HIV p24) substantially minimizes this problem. A proprietary technology separates the lentivirus from free p24 in solution prior to running the ELISA portion of the assay.

Assay Principle for the QuickTiter Lentivirus Titer Kit (Lentivirus-Associated p24 ELISA).

ViraBind™ Lentivirus Reagents Successfully Separate Free p24 from Lentivirus-Associated p24. Recombinant p24 diluted in culture medium was treated with ViraBind™ Lentivirus Reagents. The amount of p24 in the supernatant and pellet was measured according to the assay protocol.

Recent Product Citations
  1. Chinn, H.K. et al. (2022). Hypoxia-inducible lentiviral gene expression in engineered human macrophages. J Immunother Cancer. 10(6):e003770. doi: 10.1136/jitc-2021-003770.
  2. Barreira, M. et al. (2022). Enzymatically amplified linear dbDNATM as a rapid and scalable solution to industrial lentiviral vector manufacturing. Gene Ther. doi: 10.1038/s41434-022-00343-4.
  3. Labisch, J.J. et al. (2022). Steric exclusion chromatography of lentiviral vectors using hydrophilic cellulose membranes. J Chromatogr A. doi: 10.1016/j.chroma.2022.463148.
  4. Mierzejewska, J. et al. (2022). The Beneficial Effect of IL-12 and IL-18 Transduced Dendritic Cells Stimulated with Tumor Antigens on Generation of an Antitumor Response in a Mouse Colon Carcinoma Model. J Immunol Res. doi: 10.1155/2022/7508928.
  5. Yoo, K.W. et al. (2022). Targeting DNA polymerase to DNA double-strand breaks reduces DNA deletion size and increases templated insertions generated by CRISPR/Cas9. Nucleic Acids Res. 50(7):3944-3957. doi: 10.1093/nar/gkac186.
  6. Sadangi, S. et al. (2022). Role of the Skin Microenvironment in Melanomagenesis: Epidermal Keratinocytes and Dermal Fibroblasts Promote BRAF Oncogene-Induced Senescence Escape in Melanocytes. Cancers (Basel). 14(5):1233. doi: 10.3390/cancers14051233.
  7. Banskota, S. et al. (2022). Engineered virus-like particles for efficient in vivo delivery of therapeutic proteins. Cell. 185(2):250-265.e16. doi: 10.1016/j.cell.2021.12.021.
  8. Inam, H. et al. (2021). Genomic and experimental evidence that ALKATI does not predict single agent sensitivity to ALK inhibitors. iScience. doi: 10.1016/j.isci.2021.103343.
  9. Lam, J.H. et al. (2021). Polymersomes as Stable Nanocarriers for a Highly Immunogenic and Durable SARS-CoV-2 Spike Protein Subunit Vaccine. ACS Nano. 15(10):15754-15770. doi: 10.1021/acsnano.1c01243.
  10. Leach, A. et al. (2021). A tetrameric ACE2 protein broadly neutralizes SARS-CoV-2 spike variants of concern with elevated potency. Antiviral Res. 194:105147. doi: 10.1016/j.antiviral.2021.105147. 
  11. Kumar, S. et al. (2021). In Vivo Lentiviral Gene Delivery of HLA-DR and Vaccination of Humanized Mice for Improving the Human T and B Cell Immune Reconstitution. Biomedicines. 9(8):961. doi: 10.3390/biomedicines9080961.
  12. Riethmüller, D. et al. (2021). Scalable upstream process development for the suspension-based production of lentiviral vectors for CAR T cell therapies with multiparallel & benchtop bioreactor systems & DoE methodology. Cell Gene Ther Insights. 7(6):689–700. doi: 10.18609/cgti.2021.099.
  13. Tulotta, C. et al. (2021). IL-1B drives opposing responses in primary tumours and bone metastases; harnessing combination therapies to improve outcome in breast cancer. NPJ Breast Cancer. 7(1):95. doi: 10.1038/s41523-021-00305-w.
  14. Valverde, A. et al. (2021). Dipeptidyl peptidase 4 contributes to Alzheimer’s disease-like defects in a mouse model and is increased in sporadic Alzheimer’s disease brains. J Biol Chem. doi: 10.1016/j.jbc.2021.100963.
  15. Torres, A.G. et al. (2021). Human tRNAs with inosine 34 are essential to efficiently translate eukarya-specific low-complexity proteins. Nucleic Acids Res. doi: 10.1093/nar/gkab461.
  16. Lyu, P. et al. (2021). Adenine Base Editor Ribonucleoproteins Delivered by Lentivirus-Like Particles Show High On-Target Base Editing and Undetectable RNA Off-Target Activities. CRISPR J. 4(1):69-81. doi: 10.1089/crispr.2020.0095.
  17. Li, H. et al. (2021). A Rat Model of EcoHIV Brain Infection. J. Vis. Exp. 167:e62137. doi: 10.3791/62137.
  18. Van Cleemput, J. et al. (2020). CRISPR/Cas9-constructed pseudorabies virus mutants reveal the importance of UL13 in alphaherpesvirus escape from genome silencing. J Virol. doi: 10.1128/JVI.02286-20.
  19. Cadima-Couto, I. et al. (2020). Anti-HIV-1 Activity of pepRF1, a Proteolysis-Resistant CXCR4 Antagonist Derived from Dengue Virus Capsid Protein. ACS Infect Dis. doi: 10.1021/acsinfecdis.9b00507.
  20. Wu, J. et al. (2020). Requisite Chromatin Remodeling for Myeloid and Erythroid Lineage Differentiation from Erythromyeloid Progenitors. Cell Rep. 33(7):108395. doi: 10.1016/j.celrep.2020.108395.
  21. Gardell, J.L. et al. (2020). Human macrophages engineered to secrete a bispecific T cell engager support antigen-dependent T cell responses to glioblastoma. J Immunother Cancer. 8(2):e001202. doi: 10.1136/jitc-2020-001202.
  22. Narayan, P. et al. (2020). PICALM Rescues Endocytic Defects Caused by the Alzheimer's Disease Risk Factor APOE4. Cell Rep. 33(1):108224. doi: 10.1016/j.celrep.2020.108224.
  23. Lyu, P. et al. (2020). Sensitive and reliable evaluation of single-cut sgRNAs to restore dystrophin by a GFP-reporter assay. PLoS One. 15(9):e0239468. doi: 10.1371/journal.pone.0239468.
  24. Choi, J.A. et al. (2020). Cross-Protection against MERS-CoV by Prime-Boost Vaccination Using Viral Spike DNA and Protein. J Virol. doi: 10.1128/JVI.01176-20.
  25. Hoffmann, M.A.G. et al. (2020). Nanoparticles presenting clusters of CD4 expose a universal vulnerability of HIV-1 by mimicking target cells. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.2010320117.
  26. Fernandes-Junior, S.A. et al. (2020). Stimulation of Retrotrapezoid Nucleus Phox2b-expressing Neurons Rescues Breathing Dysfunction in an Experimental Parkinson's Disease Rat Model. Brain Pathol. doi: 10.1111/bpa.12868.
  27. Folegatti, P.M. et al. (2020). Safety and immunogenicity of a candidate Middle East respiratory syndrome coronavirus viral-vectored vaccine: a dose-escalation, open-label, non-randomised, uncontrolled, phase 1 trial. Lancet Infect Dis. pii: S1473-3099(20)30160-2. doi: 10.1016/S1473-3099(20)30160-2.
  28. Purroy, R. et al. (2020). Frataxin-deficient cardiomyocytes present an altered thiol-redox state which targets actin and pyruvate dehydrogenase. Redox Biology. 32:101520. doi: 10.1016/j.redox.2020.101520.
  29. Javidi-Parsijani, P. et al. (2020). CRISPR/Cas9 increases mitotic gene conversion in human cells. Gene Ther. doi: 10.1038/s41434-020-0126-z.
  30. Yang, H. et al. (2020). Understanding the structural basis of HIV-1 restriction by the full length double-domain APOBEC3G. Nat Commun. 11(1):632. doi: 10.1038/s41467-020-14377-y.