Lentivirus-Associated p24 ELISA Kit

Lentivirus-Associated p24 ELISA Kit
  • Proprietary technology separates virus-associated p24 from free p24
  • Minimizes overestimation of lentivirus titer common to traditional p24 ELISA kits
  • Lentivirus quantitation on a standard microplate reader
  • HIV-1 p24 Standard included

 

Frequently Asked Questions about this product

General FAQs about Viral Gene Delivery

Video: Color Development in an ELISA

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

QuickTiter™ Lentivirus Titer Kit (Lentivirus-Associated HIV p24)
Catalog Number
VPK-107-5
Size
5 x 96 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$2,695.00
QuickTiter™ Lentivirus Titer Kit (Lentivirus-Associated HIV p24)
Catalog Number
VPK-107
Size
96 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$635.00
QuickTiter™ Lentivirus Titer Kit (Lentivirus-Associated HIV p24), Trial Size
Catalog Number
VPK-107-T
Size
32 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$315.00
Product Details

Measuring the HIV-1 p24 antigen is a long-established method for lentivirus quantitation. However, the traditional p24 ELISA detects both virus-associated p24 and free p24 generated by 293 cells during transient transfection. Free p24 can account for a substantial portion of total p24 in the supernatant. Therefore, the ELISA typically overestimates the quantity of lentivirus present.

Our QuickTiter™ Lentivirus Titer Kit (Lentivirus-Associated HIV p24) substantially minimizes this problem. A proprietary technology separates the lentivirus from free p24 in solution prior to running the ELISA portion of the assay.

Assay Principle for the QuickTiter Lentivirus Titer Kit (Lentivirus-Associated p24 ELISA).

ViraBind™ Lentivirus Reagents Successfully Separate Free p24 from Lentivirus-Associated p24. Recombinant p24 diluted in culture medium was treated with ViraBind™ Lentivirus Reagents. The amount of p24 in the supernatant and pellet was measured according to the assay protocol.

Recent Product Citations
  1. Hoffmann, M.A.G. et al. (2020). Nanoparticles presenting clusters of CD4 expose a universal vulnerability of HIV-1 by mimicking target cells. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.2010320117.
  2. Fernandes-Junior, S.A. et al. (2020). Stimulation of Retrotrapezoid Nucleus Phox2b-expressing Neurons Rescues Breathing Dysfunction in an Experimental Parkinson's Disease Rat Model. Brain Pathol. doi: 10.1111/bpa.12868.
  3. Folegatti, P.M. et al. (2020). Safety and immunogenicity of a candidate Middle East respiratory syndrome coronavirus viral-vectored vaccine: a dose-escalation, open-label, non-randomised, uncontrolled, phase 1 trial. Lancet Infect Dis. pii: S1473-3099(20)30160-2. doi: 10.1016/S1473-3099(20)30160-2.
  4. Purroy, R. et al. (2020). Frataxin-deficient cardiomyocytes present an altered thiol-redox state which targets actin and pyruvate dehydrogenase. Redox Biology. 32:101520. doi: 10.1016/j.redox.2020.101520.
  5. Javidi-Parsijani, P. et al. (2020). CRISPR/Cas9 increases mitotic gene conversion in human cells. Gene Ther. doi: 10.1038/s41434-020-0126-z.
  6. Yang, H. et al. (2020). Understanding the structural basis of HIV-1 restriction by the full length double-domain APOBEC3G. Nat Commun. 11(1):632. doi: 10.1038/s41467-020-14377-y.
  7. Goo, J. et al. (2020). Characterization of novel monoclonal antibodies against MERS-coronavirus spike protein. Virus Res. doi: 10.1016/j.virusres.2020.197863.
  8. Czarnek, M. et al. (2019). Proteolytic Processing of Neuregulin 2. Mol Neurobiol. doi: 10.1007/s12035-019-01846-9.
  9. Pan, X. et al. (2019). Lysine-specific demethylase-1 regulates fibroblast activation in pulmonary fibrosis via TGF-β1/Smad3 pathway. Pharmacol Res. 152:104592. doi: 10.1016/j.phrs.2019.104592.
  10. Bussiere, R. et al. (2019). Upregulation of the Sarco-Endoplasmic Reticulum Calcium ATPase 1 Truncated Isoform Plays a Pathogenic Role in Alzheimer's Disease. Cells. 8(12). pii: E1539. doi: 10.3390/cells8121539.
  11. Jha, A. et al. (2019). Alterations in Plasma Membrane Ion Channel Structures Stimulate NLRP3 Inflammasomes Activation in APOL1 Risk Milieu. FEBS J. doi: 10.1111/febs.15133.
  12. Zhang, S. et al. (2019). The resistance of esophageal cancer cells to paclitaxel can be reduced by the knockdown of long noncoding RNA DDX11-AS1 through TAF1/TOP2A inhibition. Am J Cancer Res. 9(10):2233-2248.
  13. Park, T.Y. et al. (2019). Chloroquine modulates inflammatory autoimmune responses through Nurr1 in autoimmune diseases. Sci Rep. 9(1):15559. doi: 10.1038/s41598-019-52085-w.
  14. Gonzalez, S.M. et al. (2019). Vitamin D treatment of peripheral blood mononuclear cells modulated immune activation and reduced susceptibility to HIV-1 infection of CD4+ T lymphocytes. PLoS One. 14(9):e0222878. doi: 10.1371/journal.pone.0222878.
  15. Ruscic, J. et al. (2019). Lentiviral Vector Purification Using Nanofiber Ion Exchange Chromatography. Mol Ther Methods Clin Dev. doi: 10.1016/j.omtm.2019.08.007.
  16. Poorebrahim, M. et al. (2019). Production of CAR T-cells by GMP-grade lentiviral vectors: Latest advances and future prospects. Crit Rev Clin Lab Sci. doi: 10.1080/10408363.2019.1633512.
  17. Blomberg, R. et al. (2019). Fibroblast activation protein restrains adipogenic differentiation and regulates matrix-mediated mTOR signaling. Matrix Biol. pii: S0945-053X(19)30189-1. doi: 10.1016/j.matbio.2019.07.007.
  18. Lyu, P. et al. (2019). Delivering Cas9/sgRNA ribonucleoprotein (RNP) by lentiviral capsid-based bionanoparticles for efficient 'hit-and-run' genome editing. Nucleic Acids Res. pii: gkz605. doi: 10.1093/nar/gkz605.
  19. Ommer, A. et al. (2019). Ral GTPases in Schwann cells promote radial axonal sorting in the peripheral nervous system. J Cell Biol. pii: jcb.201811150. doi: 10.1083/jcb.201811150.
  20. Kumar, R. et al. (2019). The Cytosine Deaminase AICDA Regulates FGF/ERK Signaling to Achieve the Naïve Pluripotent State During Reprogramming. Stem Cells. doi: 10.1002/stem.3023.
  21. Zhang, M. et al. (2019). Downregulation of miR143/145 gene cluster expression promotes the aortic media degeneration process via the TGF-β1 signaling pathway. Am J Transl Res. 11(1):370-378.
  22. Lee, S.Y. et al. (2019). Optogenetic control of iPS cell-derived neurons in 2D and 3D culture systems using channelrhodopsin-2 expression driven by the synapsin-1 and calcium-calmodulin kinase II promoters. J Tissue Eng Regen Med. 13(3):369-384. doi: 10.1002/term.2786.
  23. DaSilva-Arnold, S.C. et al. (2019). ZEB2, a master regulator of the epithelial-mesenchymal transition, mediates trophoblast differentiation. Mol Hum Reprod. 25(2):61-75. doi: 10.1093/molehr/gay053.
  24. Mohammadzadeh, N. et al. (2019). Polymorphisms of the cytidine deaminase APOBEC3F have different HIV-1 restriction efficiencies. Virology. 527:21-31. doi: 10.1016/j.virol.2018.11.004.
  25. Xie, X. et al. (2019). PPPDE1 promotes hepatocellular carcinoma development by negatively regulate p53 and apoptosis. Apoptosis. 24(1-2):135-144. doi: 10.1007/s10495-018-1491-6.
  26. Sanz, R. et al. (2019). In Situ Peroxidase Labeling and Mass Spectrometry of Alpha-Synuclein in Rat Cortical Neurons. Methods Mol Biol. 1948:235-246. doi: 10.1007/978-1-4939-9124-2_18.
  27. Lu, B. et al. (2019). Delivering SaCas9 mRNA by lentivirus-like bionanoparticles for transient expression and efficient genome editing. Nucleic Acids Res. doi: 10.1093/nar/gkz093.
  28. Varela, M. et al. (2019). Extracellular mycobacterial DNA drives disease progression by triggering Caspase-11-dependent pyroptosis of infected macrophages. bioRxiv. 514125. doi: 10.1101/514125.
  29. Fanning, S. et al. (2019). Lipidomic Analysis of α-Synuclein Neurotoxicity Identifies Stearoyl CoA Desaturase as a Target for Parkinson Treatment. Mol Cell. 73(5):1001-1014.e8. doi: 10.1016/j.molcel.2018.11.028.
  30. Malheiros-Lima, M.R. et al. (2018). Breathing responses produced by optogenetic stimulation of adrenergic C1 neurons are dependent on the connection with preBötzinger complex in rats. Pflugers Arch - Eur J Physiol. 470: 1659. doi: 10.1007/s00424-018-2186-0.