Lentivirus-Associated p24 ELISA Kit

Lentivirus-Associated p24 ELISA Kit
  • Proprietary technology separates virus-associated p24 from free p24
  • Minimizes overestimation of lentivirus titer common to traditional p24 ELISA kits
  • Lentivirus quantitation on a standard microplate reader
  • HIV-1 p24 Standard included

 

Frequently Asked Questions about this product

General FAQs about Viral Gene Delivery

Video: Color Development in an ELISA

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

QuickTiter™ Lentivirus Titer Kit (Lentivirus-Associated HIV p24)
Catalog Number
VPK-107-5
Size
5 x 96 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$2,975.00
QuickTiter™ Lentivirus Titer Kit (Lentivirus-Associated HIV p24)
Catalog Number
VPK-107
Size
96 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$690.00
QuickTiter™ Lentivirus Titer Kit (Lentivirus-Associated HIV p24), Trial Size
Catalog Number
VPK-107-T
Size
32 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$355.00
Product Details

Measuring the HIV-1 p24 antigen is a long-established method for lentivirus quantitation. However, the traditional p24 ELISA detects both virus-associated p24 and free p24 generated by 293 cells during transient transfection. Free p24 can account for a substantial portion of total p24 in the supernatant. Therefore, the ELISA typically overestimates the quantity of lentivirus present.

Our QuickTiter™ Lentivirus Titer Kit (Lentivirus-Associated HIV p24) substantially minimizes this problem. A proprietary technology separates the lentivirus from free p24 in solution prior to running the ELISA portion of the assay.

Assay Principle for the QuickTiter Lentivirus Titer Kit (Lentivirus-Associated p24 ELISA).

ViraBind™ Lentivirus Reagents Successfully Separate Free p24 from Lentivirus-Associated p24. Recombinant p24 diluted in culture medium was treated with ViraBind™ Lentivirus Reagents. The amount of p24 in the supernatant and pellet was measured according to the assay protocol.

Recent Product Citations
  1. Schatz, S. et al. (2023). Generation of Antibodies Selectively Recognizing Epitopes in a Formaldehyde-Fixed Cell-Surface Antigen Using Virus-like Particle Display and Hybridoma Technology. Antibodies. 12(3):57. doi: 10.3390/antib12030057.
  2. Capelo-Diz, A. et al. (2023). Hepatic levels of S-adenosylmethionine regulate the adaptive response to fasting. Cell Metab. 35(8):1373-1389.e8. doi: 10.1016/j.cmet.2023.07.002. 
  3. Gutierrez-Ruiz, O.L. et al. (2023). Ectopic expression of DOCK8 regulates lysosome-mediated pancreatic tumor cell invasion. Cell Rep. 42(9):113042. doi: 10.1016/j.celrep.2023.113042.
  4. Diz, A.C. et al. (2023). Hepatic levels of S-adenosylmethionine regulate the adaptive response to fasting. Cell Metab. 35(8): 1373-1389. doi: 10.1016/j.cmet.2023.0.002.
  5. Merk, D. et al. (2023). Caffeine Inhibits Oxidative Stress- and Low Dose Endotoxemia-Induced Senescence—Role of Thioredoxin-1. Antioxidants. 12(6):1244. doi: 10.3390/antiox1206124.
  6. Barisas, D.A.G. et al. (2023). Tumor-derived interleukin-1α and leukemia inhibitory factor promote extramedullary hematopoiesis. PLoS Biol. 21(5):e3001746. doi: 10.1371/journal.pbio.3001746.
  7. Zou, Z. et al. (2023). Protein arginine methyltransferase 8 regulates ferroptosis and macrophage polarization in spinal cord injury via glial cell-derived neurotrophic factor. CNS Neurosci Ther. doi: 10.1111/cns.14162.
  8. Wei, Y. et al. (2023). LncRNA XIST promotes adjuvant-induced arthritis by increasing the expression of YY1 via miR-34a-5p. Arch Rheumatol. 38(1):82-94. doi: 10.46497/ArchRheumatol.2022.9250.
  9. Loo, L. et al. (2023). Fibroblast-expressed LRRC15 is a receptor for SARS-CoV-2 spike and controls antiviral and antifibrotic transcriptional programs. PLoS Biol. 21(2):e3001967. doi: 10.1371/journal.pbio.3001967.
  10. Krishnan, A. et al. (2022). EPAC Regulates Melanoma Growth by Stimulating mTORC1 Signaling and Loss of EPAC Signaling Dependence Correlates with Melanoma Progression. Mol Cancer Res. doi: 10.1158/1541-7786.MCR-22-0026.
  11. Yi, D. et al. (2022). MicroRNA-144-3p Represses the Growth and EMT of Thyroid Cancer via the E2F2/TNIK Axis in Cells and Male BALB/c Nude Mice. Endocrinology. 163(7):bqac071. doi: 10.1210/endocr/bqac071.
  12. Wang, J. et al. (2022). AAV-delivered suppressor tRNA overcomes a nonsense mutation in mice. Nature. 604(7905):343-348. doi: 10.1038/s41586-022-04533-3.
  13. Deng, W. et al. (2022). Streptococcal pyrogenic exotoxin B cleaves GSDMA and triggers pyroptosis. Nature. doi: 10.1038/s41586-021-04384-4.
  14. Yang, H. et al. (2022). Structural basis of sequence-specific RNA recognition by the antiviral factor APOBEC3G. Nat Commun. 13(1):7498. doi: 10.1038/s41467-022-35201-9.
  15. Fernandes, R.P. et al. (2022). Assessing Multi-Attribute Characterization of Enveloped and Non-Enveloped Viral Particles by Capillary Electrophoresis. Viruses. 14(11):2539. doi: 10.3390/v14112539.
  16. Cruz-Cardenas, J.A. et al. (2022). A pseudovirus-based platform to measure neutralizing antibodies in Mexico using SARS-CoV-2 as proof-of-concept. Sci Rep. 12(1):17966. doi: 10.1038/s41598-022-22921-7.
  17. Yadav, M.K. et al. (2022). Lentiviral vector mediated gene therapy for type I Dent disease effectively ameliorates Dent disease-like phenotypes for three months in ClC-5 null mice. Mol Ther Methods Clin Dev. doi: 10.1016/j.omtm.2022.09.009.
  18. Jakobsen, N.D. et al. (2022). The ROC skin model: a robust skin equivalent for permeation and live cell imaging studies. Eur J Pharm Sci. doi: 10.1016/j.ejps.2022.106282.
  19. Chinn, H.K. et al. (2022). Hypoxia-inducible lentiviral gene expression in engineered human macrophages. J Immunother Cancer. 10(6):e003770. doi: 10.1136/jitc-2021-003770.
  20. Barreira, M. et al. (2022). Enzymatically amplified linear dbDNATM as a rapid and scalable solution to industrial lentiviral vector manufacturing. Gene Ther. doi: 10.1038/s41434-022-00343-4.
  21. Labisch, J.J. et al. (2022). Steric exclusion chromatography of lentiviral vectors using hydrophilic cellulose membranes. J Chromatogr A. doi: 10.1016/j.chroma.2022.463148.
  22. Mierzejewska, J. et al. (2022). The Beneficial Effect of IL-12 and IL-18 Transduced Dendritic Cells Stimulated with Tumor Antigens on Generation of an Antitumor Response in a Mouse Colon Carcinoma Model. J Immunol Res. doi: 10.1155/2022/7508928.
  23. Yoo, K.W. et al. (2022). Targeting DNA polymerase to DNA double-strand breaks reduces DNA deletion size and increases templated insertions generated by CRISPR/Cas9. Nucleic Acids Res. 50(7):3944-3957. doi: 10.1093/nar/gkac186.
  24. Sadangi, S. et al. (2022). Role of the Skin Microenvironment in Melanomagenesis: Epidermal Keratinocytes and Dermal Fibroblasts Promote BRAF Oncogene-Induced Senescence Escape in Melanocytes. Cancers (Basel). 14(5):1233. doi: 10.3390/cancers14051233.
  25. Banskota, S. et al. (2022). Engineered virus-like particles for efficient in vivo delivery of therapeutic proteins. Cell. 185(2):250-265.e16. doi: 10.1016/j.cell.2021.12.021.
  26. López, C.L. et al. (2021). Arming Immune Cell Therapeutics with Polymeric Prodrugs. Adv Healthc Mater. doi: 10.1002/adhm.202101944.
  27. Zheng, Z. et al. (2021). The lysosomal Rag-Ragulator complex licenses RIPK1– and caspase-8–mediated pyroptosis by Yersinia. Science. 372(6549):eabg0269. doi: 10.1126/science.abg0269.
  28. Inam, H. et al. (2021). Genomic and experimental evidence that ALKATI does not predict single agent sensitivity to ALK inhibitors. iScience. doi: 10.1016/j.isci.2021.103343.
  29. Lam, J.H. et al. (2021). Polymersomes as Stable Nanocarriers for a Highly Immunogenic and Durable SARS-CoV-2 Spike Protein Subunit Vaccine. ACS Nano. 15(10):15754-15770. doi: 10.1021/acsnano.1c01243.
  30. Leach, A. et al. (2021). A tetrameric ACE2 protein broadly neutralizes SARS-CoV-2 spike variants of concern with elevated potency. Antiviral Res. 194:105147. doi: 10.1016/j.antiviral.2021.105147.