Lentivirus-Associated p24 ELISA Kit

  • Proprietary technology separates virus-associated p24 from free p24
  • Minimizes overestimation of lentivirus titer common to traditional p24 ELISA kits
  • Lentivirus quantitation on a standard microplate reader
  • HIV-1 p24 Standard included


Frequently Asked Questions about this product

General FAQs about Viral Gene Delivery

Video: Color Development in an ELISA

Email To BuyerPrint this PageCopy Link

Please contact your distributor for pricing.

QuickTiter™ Lentivirus Titer Kit (Lentivirus-Associated HIV p24)
Catalog Number
5 x 96 assays
Manual/Data Sheet Download
SDS Download
QuickTiter™ Lentivirus Titer Kit (Lentivirus-Associated HIV p24)
Catalog Number
96 assays
Manual/Data Sheet Download
SDS Download
QuickTiter™ Lentivirus Titer Kit (Lentivirus-Associated HIV p24), Trial Size
Catalog Number
32 assays
Manual/Data Sheet Download
SDS Download
Product Details

Measuring the HIV-1 p24 antigen is a long-established method for lentivirus quantitation. However, the traditional p24 ELISA detects both virus-associated p24 and free p24 generated by 293 cells during transient transfection. Free p24 can account for a substantial portion of total p24 in the supernatant. Therefore, the ELISA typically overestimates the quantity of lentivirus present.

Our QuickTiter™ Lentivirus Titer Kit (Lentivirus-Associated HIV p24) substantially minimizes this problem. A proprietary technology separates the lentivirus from free p24 in solution prior to running the ELISA portion of the assay.

Assay Principle for the QuickTiter Lentivirus Titer Kit (Lentivirus-Associated p24 ELISA).

ViraBind™ Lentivirus Reagents Successfully Separate Free p24 from Lentivirus-Associated p24. Recombinant p24 diluted in culture medium was treated with ViraBind™ Lentivirus Reagents. The amount of p24 in the supernatant and pellet was measured according to the assay protocol.

Recent Product Citations
  1. Zhao, Y. et al. (2016). Letrozole regulates actin cytoskeleton polymerization dynamics in a SRC-1 dependent manner in the hippocampus of mice. J. Steroid Biochem. Mol. Biol. doi:10.1016/j.jsbmb.2016.11.013.
  2. Cissé, M. et al. (2016). The transcription factor XBP1s restores hippocampal synaptic plasticity and memory by control of the Kalirin-7 pathway in Alzheimer model. Mol Psychiatry. doi:10.1038/mp.2016.152.
  3. Rhee, Y. H. et al. (2016). Neural stem cells secrete factors facilitating brain regeneration upon constitutive Raf-Erk activation. Sci Rep. doi:10.1038/srep32025.
  4. Sato, Y. et al. (2016). TFEB overexpression promotes glycogen clearance of Pompe disease iPSC-derived skeletal muscle. Mol Ther Methods Clin Dev. doi:10.1038/mtm.2016.54.
  5. Chan, C. M. et al. (2016). Carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) is an important surface attachment factor facilitating the entry of the Middle East respiratory syndrome coronavirus (MERS-CoV). J Virol. doi:10.1128/JVI.01133-16.
  6. Liu, X. et al. (2016). miR-451 acts as a suppressor of angiogenesis in hepatocellular carcinoma by targeting the IL-6R-STAT3 pathway. Oncol Rep. doi:10.3892/or.2016.4971.
  7. Zhang, J. et al. (2016). Sulfiredoxin-1 protects against simulated ischaemia/reperfusion injury in cardiomyocyte by inhibiting PI3K/AKT-regulated mitochondrial apoptotic pathways. Biosci Rep. doi:10.1042/BSR20160076.
  8. Fontana, D. et al. (2016). Development of rabies virus-like particles for vaccine applications: Production, characterization, and protection studies. Methods Mol Biol.doi:10.1007/978-1-4939-3387-7_7.
  9. Rieger, M. E. et al. (2016). p300/β-catenin interactions regulate adult progenitor cell differentiation downstream of WNT5a/protein kinase C (PKC). J Biol Chem. 291:6569-6582.
  10. Jeon, J. et al. (2016). Gene therapy by proteasome activator, PA28γ, improves motor coordination and proteasome function in Huntington’s disease YAC128 mice. Neuroscience. 324:20-28.
  11. Gao, J. Z. et al. (2016). Long non-coding RNA HOTAIR is a marker for hepatocellular carcinoma progression and tumor recurrence. Oncol Lett. doi:0.3892/ol.2016.4130.
  12. Zhou, P. et al. (2015). Overexpression of RACK1 inhibits collagen synthesis in keloid fibroblasts via inhibition of transforming growth factor-β1/Smad signaling pathway. Int J Clin Exp Med. 8:15262-8.
  13. Li, X. et al. (2015). PTPRR regulates ERK dephosphorylation in depression mice model. J Affect Disord. (2015). doi:10.1016/j.jad.2015.12.049.
  14. Loperfido, M. et al. (2015). piggyBac transposons expressing full-length human dystrophin enable genetic correction of dystrophic mesoangioblasts. Nucleic Acids Res. doi:10.1093/nar/gkv1464.
  15. Du, J. et al. (2015). The cellular interactome for glycoprotein 5 of the Chinese highly pathogenic porcine reproductive and respiratory syndrome virus. J Integr Agr. doi:10.1016/S2095-3119(15)61186-8.
  16. Chen, P. Y. et al. (2015). Endothelial-to-mesenchymal transition drives atherosclerosis progression. J Clin Invest. doi:10.1172/JCI82719.
  17. Xu, Y. et al. (2015). Cerebralcare Granule® attenuates cognitive impairment in rats continuously overexpressing microRNA-30e. Mol Med Rep. 12:8032-8040.
  18. Feng, Y. et al. (2015). Natural polymorphisms and oligomerization of human APOBEC3H contribute to single-stranded DNA scanning ability. J Biol Chem. doi:10.1074/jbc.M115.666065.
  19. Li, S. et al. (2015). Connexin43-containing gap junctions potentiate extracellular Ca 2+-induced odontoblastic differentiation of human dental pulp stem cells via Erk1/2. Exp Cell Res.doi:10.1016/j.yexcr.2015.09.008.
  20. Bettens, K. et al. (2015). Reduced secreted clusterin as a mechanism for Alzheimer-associated CLU mutations. Mol Neurodegener. 10:1-12.
  21. Noh, K. M. et al. (2015). ATRX tolerates activity-dependent histone H3 methyl/phos switching to maintain repetitive element silencing in neurons. Proc Natl Acad Sci U S A. 112:6820-6827.
  22. Chabaud, M. et al. (2015). Cell migration and antigen capture are antagonistic processes coupled by myosin II in dendritic cells. Nat Commun. 6:7526.
  23. Li, L. et al. (2015). Mammalian target of rapamycin overexpression antagonizes chronic hypoxia-triggered pulmonary arterial hypertension via the autophagic pathway. Int J Mol Med. 36:316-322.
  24. Xu, H. et al. (2015). CCN5 attenuates profibrotic phenotypes of fibroblasts through the Smad6-CCN2 pathway: Potential role in epidural fibrosis. Int J Mol Med. doi:10.3892/ijmm.2015.2190. 
  25. Iwabuchi, M. et al. (2015). Enhancement of the antigen-specific cytotoxic T lymphocyte-inducing ability in the PMDC11 leukemic plasmacytoid dendritic cell line via lentiviral vector-mediated transduction of the caTLR4 gene. Mol Med Rep. doi:10.3892/mmr.2015.3685.
  26. Lan, X. et al. (2015). Vascular smooth muscle cells contribute to APOL1-induced podocyte injury in HIV milieu. Exp Mol Pathol. doi: 10.1016/j.yexmp.2015.03.020. 
  27. Solanes, P. et al. (2015). Space exploration by dendritic cells requires maintenance of myosin II activity by IP3 receptor 1. EMBO J.  doi 10.15252/embj.201489056.
  28. Zhao, S. et al. (2015). The DEAD-box RNA helicase 5 positively regulates the replication of porcine reproductive and respiratory syndrome virus by interacting with viral Nsp9 in vitro. Virus Res. 195:217-224.
  29. Yip, M. S. et al. (2014). Antibody-dependent infection of human macrophages by severe acute respiratory syndrome coronavirusVirol J. 11:82.
  30. Noh, K. M. et al. (2014). ATRX tolerates activity-dependent histone H3 methyl/phos switching to maintain repetitive element silencing in neurons. Proc Natl Acad Sci U S A. 112:6820-6827.
  31. Huang, X. et al. (2014). IQGAP1 promotes the phenotypic switch of vascular smooth muscle by myocardin pathway: a potential target for varicose vein. Int J Clin Exp Pathol. 7:6475.
  32. Madison, M. et al.  (2014). Human semen contains exosomes with potent anti-HIV-1 activity. Retrovirology. 11:102.
  33. Wang, X. et al. (2014). Porcine reproductive and respiratory syndrome virus counteracts the porcine intrinsic virus restriction factors—IFITM1 and Tetherin in MARC-145 cells. Virus Res.  191:92-100.
  34. Salguero, G. et al. (2014). Dendritic cell–mediated immune humanization of mice: implications for allogeneic and xenogeneic stem cell transplantation.J Immunol. 192:4636-4647.
  35. Goy, C. et al. (2014). The imbalanced redox status in senescent endothelial cells is due to dysregulated Thioredoxin-1 and NADPH oxidase 4.Exp Gerontol. 56:45-52.
  36. Fontana, D. et al. (2014). Rabies virus-like particles expressed in HEK293 cells. Vaccine. 32:2799-2804.
  37. Mufarrege, E. F. et al. (2014). Development of lentiviral vectors for transient and stable protein overexpression in mammalian cells. A new strategy for recombinant human FVIII (rhFVIII) production. Protein Expr Purif. 95:50-56.
  38. Wijnen, J. P. et al. (2014). Silencing of the glycerophosphocholine phosphodiesterase GDPD5 alters the phospholipid metabolite profile in a breast cancer model in vivo as monitored by 31P MRS. NMR Biomed. 27:692-699.
  39. Rohrbach, T. D. et al. (2014). Targeting the effector domain of the myristoylated alanine rich C-kinase substrate enhances lung cancer radiation sensitivity. Int J Oncol. 46:1079-1088.
  40. Cubbon, R. M. et al. (2014). Restoring Akt1 activity in outgrowth endothelial cells from South Asian men rescues vascular reparative potential. Stem Cells. 32:2714-2723.
  41. Caraveo, G. et al. (2014). Calcineurin Determines Toxic Versus Beneficial Responses to α-Synuclein. Proc Natl Acad Sci U S A. 111:E3544-E3552.
  42. Lan, X. et al. (2014). APOL1 Risk Variants Enhance Podocyte Necrosis Through Compromising Lysosomal Membrane Permeability. Am J Physiol Renal Physiol. 307:F326-F336.
  43. Belanger, K. et al. (2013). Binding of RNA by APOBEC3G Controls Deamination-Independent Restriction of Retroviruses. J. Exp. Biol. 216:2213-2220.
  44. Yu, X. et al. (2012). Identification of Hepatitis C Virus Inhibitors Targeting Different Aspects of Infection Using a Cell-Based Assay. Antimicrob. Agents Chemother. 56: 6109-6120.
  45. Walker, K. et al. (2012). Depletion of GGA1 and GGA3 Mediates Postinjury Elevation of BACE1. J. Neurosci. 32: 10423-10437.
  46. Zhou, B. et al. (2012). Interactions Between β-Catenin and Transforming Growth Factor-β Signaling Pathways Mediate Epithelial-Mesenchymal Transition and Are Dependent on the Transcriptional Co-Activator cAMP-Response Element-Binding Protein (CREB)-Binding. J.Biol. Chem. 287: 7026-7038.
  47. Nedelec, A.D. et al. (2012). Noonan Syndrome-Causing SHP2 Mutants Inhibit Insulin-like Growth Factor 1 Release Via Growth Hormone-Induced ERK Hyperactivation, which Contributes to Short Stature. PNAS. 109:4257-4262.
  48. Lavender, H. et al .(2012). In Vitro Characterization of the Activity of PF-05095808, a Novel Biological Agent for Hepatitis C Virus Therapy. Antimicrob. Agents Chemother. 56:1364-1375.
  49. Keck, Z.Y. et al. (2011). Mapping a Region of Hepatitis C Virus E2 that is Responsible for Escape from Neutralizing Antibodies and a Core CD81-Binding Region that Does Not Tolerate Neutralization Escape Mutations. J. Virol. 85:10451-10463.
  50. Sanchez-Antequera, Y. et al. (2011). Magselectofection: an Integrated Method of Nanomagnetic Separation and Genetic Modification of Target Cells. Blood 117:e171-e181.
  51. Tiedemann, R.E. et al. (2010). Kinome-wide RNAi Studies in Human Multiple Myeloma Identify Vulnerable Kinase Targets, Including a Lymphoid Restricted Kinase, GRK6. Blood 115:1594-1604.
  52. Lin, R-J. et al. (2009). Distinct Antiviral Roles for Human 2'5'-Oligoadenylate Synthetase Family Members Against Dengue Virus Infection. J. Immunol. 183:8035-8043.
  53. Joshi, M.B. et al. (2009). Extracellular Cadherin Repeat Domains EC1 and EC5 of T-Cadherin are Essential for its Ability to Stimulate Angiogenic Behavior of Endothelial Cells. FASEB J. 10.1096/fj.09-133611.
  54. Sukumaran S. et al. (2009). Functional Characterization of the Human 1-Acylglycerol-3-Phosphate-O-Acyltransferase Isoform 10/glycerol-3-Phosphate Acyltransferase Isoform 3. J. Mol. Endocrinol. 42:469-478.
  55. Keck, Z.-y. et al. (2009). Mutations in HCV E2 Located Outside the CD81 Binding Sites Lead to Escape from Broadly Neutralizing Antibodies but Compromise Virus Infectivity. J. Virol. 10.1128/JVI.00248-09.
  56. Dyer, K. et al. (2008). Functionally Competent Eosinophils Differentiated Ex Vivo in High Purity from Normal Mouse Bone Marrow. J. Immunol. 181:4004-4009.
  57. Escamilla-Hernandez, R. et al. (2008). Constitutively Active Protein Kinase A Qualitatively Mimics the Effects of Follicle-Stimulating Hormone on Granulosa Cell Differentiation. Mol. Endocrin. 22(8):1842-1852.