Peroxidase / Hydrogen Peroxide Assays

Peroxidase / Hydrogen Peroxide Assays
  • Detect peroxidase activity levels as low as 0.16 mU/mL and peroxide levels down to 1 nM
  • Suitable for use with cell lysates, tissue homogenates, cell culture supernatants, plasma, serum, urine, or other biological fluids
  • Simple assay protocol provides results in 30-90 minutes, depending on sample type


Frequently Asked Questions about this product

General FAQs about Oxidative Stress

Email To BuyerPrint this PageCopy Link

Please contact your distributor for pricing.

OxiSelect™ Hydrogen Peroxide/Peroxidase Assay Kit (Fluorometric)
Catalog Number
500 assays
Manual/Data Sheet Download
SDS Download
OxiSelect™ Hydrogen Peroxide/Peroxidase Assay Kit (Colorimetric)
Catalog Number
500 assays
Manual/Data Sheet Download
SDS Download
Product Details

The OxiSelect™ Hydrogen Peroxide/Peroxidase Assay Kit is a sensitive quantitative fluorometric assay for hydrogen peroxide or peroxidase activity levels.   In the presence of HRP, ADHP reacts with H2O2 in a 1:1 stoichiometry to produce highly fluorescent Resorufin.  The Resorufin product can be easily read by a fluorescence microplate reader with an excitation of 530-560 nm and an emission of 590 nm, or for absorbance at 560 nm.  Fluorescence values are proportional to the H2O2 or peroxidase levels within the samples.  The H2O2 or peroxidase content in unknown samples is determined by comparison with its respective standard curve.

Recent Product Citations
  1. Gromotowicz-Poplawska, A. et al. (2021). Hyperglycemia Potentiates Prothrombotic Effect of Aldosterone in a Rat Arterial Thrombosis Model. Cells. 10(2):471. doi: 10.3390/cells10020471 (#STA-844).
  2. Chiang, C.C. et al. (2020). Aqueous Extract of Kan-Lu-Hsiao-Tu-Tan Ameliorates Collagen-Induced Arthritis in Mice by Inhibiting Oxidative Stress and Inflammatory Responses. Life (Basel). 10(12):E313. doi: 10.3390/life10120313 (#STA-844).
  3. Hwang, D.K. et al. (2020). Changes in the Systemic Expression of Sirtuin-1 and Oxidative Stress after Intravitreal Anti-Vascular Endothelial Growth Factor in Patients with Retinal Vein Occlusion. Biomolecules. 10(10):1414. doi: 10.3390/biom10101414 (#STA-344).
  4. Sabry, M.M. et al. (2020). Carnitine, apelin and resveratrol regulate mitochondrial quality control (QC) related proteins and ameliorate acute kidney injury: role of hydrogen peroxide. Arch Physiol Biochem. doi: 10.1080/13813455.2020.1773504 (#STA-844).
  5. Nitta, Y. et al. (2020). Catalase is required for peroxisome maintenance during adipogenesis. Biochim Biophys Acta Mol Cell Biol Lipids. doi: 10.1016/j.bbalip.2020.158726 (#STA-344).
  6. Ansar, M. et al. (2020). Increased Lung Catalase Activity Confers Protection Against Experimental RSV Infection. Sci Rep. 10(1):3653. doi: 10.1038/s41598-020-60443-2 (#STA-344).
  7. Yoshimoto, S. et al. (2020). Riboflavin Plays a Pivotal Role in the UVA-Induced Cytotoxicity of Fibroblasts as a Key Molecule in the Production of H2O2 by UVA Radiation in Collaboration with Amino Acids and Vitamins. Int J Mol Sci. 21(2). pii: E554. doi: 10.3390/ijms21020554 (#STA-344).
  8. Ścibior, A. et al. (2020). In vitro effect of vanadyl sulfate on cultured primary astrocytes: cell viability and oxidative stress markers. J Appl Toxicol. doi: 10.1002/jat.3939 (#STA-844).
  9. El-Boshy, M. et al. (2020). Vitamin D3 and calcium cosupplementation alleviates cadmium hepatotoxicity in the rat: Enhanced antioxidative and anti-inflammatory actions by remodeling cellular calcium pathways. J Biochem Mol Toxicol. doi: 10.1002/jbt.22440 (#STA-844).
  10. Anand, S. et al. (2019). Agastache honey has superior antifungal activity in comparison with important commercial honeys. Sci Rep. 9(1):18197. doi: 10.1038/s41598-019-54679-w (#STA-344).
  11. Pei, J.F. et al. (2019). Diurnal oscillations of endogenous H2O2 sustained by p66Shc regulate circadian clocks. Nat Cell Biol. 21(12):1553-1564. doi: 10.1038/s41556-019-0420-4 (#STA-344).
  12. Mehta, N. et al. (2019). Follistatin Protects against Glomerular Mesangial Cell Apoptosis and Oxidative Stress to Ameliorate Chronic Kidney Disease. Antioxid Redox Signal. doi: 10.1089/ars.2018.7684 (#STA-344).
  13. Lee, D.H. et al. (2019). Peroxiredoxin 6 confers protection against non-alcoholic fatty liver disease through maintaining mitochondrial function. Antioxid Redox Signal. doi: 10.1089/ars.2018.7544 (#STA-344).
  14. Oncul, S. et al. (2019). A Kojic Acid Derivative Promotes Intrinsic Apoptotic Pathway of Hepatocellular Carcinoma Cells without Incurring Drug Resistance. Chem Biol Drug Des. doi: 10.1111/cbdd.13615 (#STA-844).
  15. Nishu, S.D. et al. (2019). Nutritional status regulates algicidal activity of Aeromonas sp. L23 against cyanobacteria and green algae. PLoS One. 14(3):e0213370. doi: 10.1371/journal.pone.0213370 (#STA-844).
  16. Sakai, T. et al. (2019). Cytoplasmic OH scavenger TA293 attenuates cellular senescence and fibrosis by activating macrophages through oxidized phospholipids/TLR4. Life Sci. 221:284-292. doi: 10.1016/j.lfs.2019.02.038 (#STA-844).
  17. Abdrabouh, A. E. (2019). Liver disorders related to exposure to gasoline fumes in male rats and role of fenugreek seed supplementation. Environ Sci Pollut Res Int. 26(9):8949-8957. doi: 10.1007/s11356-019-04307-x (#STA-844).
  18. Sakai, T. et al. (2019). Hydrogen Indirectly Suppresses Increases in Hydrogen Peroxide in Cytoplasmic Hydroxyl Radical-Induced Cells and Suppresses Cellular Senescence. Int J Mol Sci. 20(2). pii: E456. doi: 10.3390/ijms20020456 (#STA-844).
  19. Nguyen, K. H. et al. (2018). Overexpression of GmNAC085 enhances drought tolerance in Arabidopsis by regulating glutathione biosynthesis, redox balance and glutathione-dependent detoxification of reactive oxygen species and methylglyoxal. Environmental and Experimental Botany. doi:10.1016/j.envexpbot.2018.12.021 (#STA-344).
  20. Mu, H.N. et al. (2018). Caffeic acid attenuates rat liver injury after transplantation involving PDIA3-dependent regulation of NADPH oxidase. Free Radic Biol Med. 129:202-214. doi: 10.1016/j.freeradbiomed.2018.09.009 (#STA-344).
  21. Bucekova, M. et al (2018). Microwave processing of honey negatively affects honey antibacterial activity by inactivation of bee-derived glucose oxidase and defensin-1. Food Chemistry. 240: 1131-1136 (#STA-344).
  22. Gamal, M. et al. (2018). Possible involvement of tetrahydrobiopterin in the disturbance of redox homeostasis in sepsis - Induced brain dysfunction. Brain Res. 1685:19-28. doi: 10.1016/j.brainres.2018.02.008 (#STA-844).
  23. Otre¸ba, M. et al (2017). Prochlorperazine interaction with melanin and melanocytes. Die Pharmazie - An International Journal of Pharmaceutical Sciences. 72 (3): 171-176(6) (#STA-844).
  24. Badosa, E. (2017). Control of fire blight infections with synthetic peptides that elicit plant defense responses. Journal of Plant Pathology. 99 (Special issue), 65-73 (#STA-344).
  25. Ohta, Y. et al. (2017). Compound 48/80, a mast cell degranulator, causes oxidative damage by enhancing vitamin C synthesis via reduced glutathione depletion and lipid peroxidation through neutrophil infiltration in rat livers. J. Clin. Biochem. Nutr. doi: 10.3164/jcbn.16-89 (#STA-344).
  26. Endesfelder, S. et al. (2017). Neuroprotection by Caffeine in Hyperoxia-Induced Neonatal Brain Injury. Int J Mol Sci. doi: 10.3390/ijms18010187 (#STA-344).
  27. Son, D.J. et al. (2016). Novel synthetic (E)-2-methoxy-4-(3-(4-methoxyphenyl) prop-1-en-1-yl) phenol inhibits arthritis by targeting signal transducer and activator of transcription 3. Sci. Rep. 6:36852 (#STA-344).
  28. Begieneman, M.P.V. et al. (2016). Dopamine induces lipid accumulation, NADPH oxidase-related oxidative stress, and a proinflammatory status of the plasma membrane in H9c2 cells. Am. J. Physiol. Heart Circ. Physiol. 311:H1097-H1107 (#STA-344).
  29. Ye, F. et al. (2016). High glucose induces reactivation of latent Kaposi's sarcoma-associated herpesvirus. J Virol. doi:10.1128/JVI.01049-16 (#STA-344).
  30. Lee, S.H. et al. (2016). Proteomic analysis indicates activation of reactive oxygen species signaling during seed germination and seedlings growth in Hordeum vulgare (barley). J. Prot. Proteom. 7:269-277 (#STA-844).