Intracellular ROS Assay

Intracellular ROS Assay
  • Quick ~1 hour protocol
  • Highly sensitive to 10 pM
  • Detects the presence of various ROS species

 

Frequently Asked Questions about this product

General FAQs about Oxidative Stress

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

OxiSelect™ Intracellular ROS Assay Kit (Green Fluorescence)
Catalog Number
STA-342
Size
96 Assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$530.00
OxiSelect™ Intracellular ROS Assay Kit (Green Fluorescence)
Catalog Number
STA-342-5
Size
5 x 96 Assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$2,260.00
OxiSelect™ Intracellular ROS Assay Kit (Green Fluorescence), Trial Size
Catalog Number
STA-342-T
Size
20 assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$265.00
Product Details

The OxiSelect™ ROS Assay Kit is a cell-based assay for measuring hydroxyl, peroxyl, and other reactive oxygen species activity within a cell. The assay employs the cell-permeable fluorogenic probe DCFH-DA, which diffuses into cells and is deacetylcated by cellular esterases into the non-fluorescent DCFH (Figure 1). In the presence of ROS, DCFH is rapidly oxidized to highly fluorescent DCF. Fluorescence is read on a standard fluorometric plate reader.

Assay Principle.

ROS in HeLa Cells Treated with Hydrogen Peroxide. 50,000 HeLa cells in a 96-well plate were pretreated with 1 mM DCFH-DA for 60 minutes at 37ºC. Cells were then treated with hydrogen peroxide for 20 minutes.

Recent Product Citations
  1. Tylek, K. et al. (2021). Time-Dependent Protective and Pro-Resolving Effects of FPR2 Agonists on Lipopolysaccharide-Exposed Microglia Cells Involve Inhibition of NF-κB and MAPKs Pathways. Cells. 10(9):2373. doi: 10.3390/cells10092373.
  2. Nelson, M.T et al. (2021). Examining cellular responses to reconstituted antibody protein liquids. Sci Rep. 11(1):17066. doi: 10.1038/s41598-021-96375-8.
  3. Andrikopoulos, N. et al. (2021). Inhibition of Amyloid Aggregation and Toxicity with Janus Iron Oxide Nanoparticles. Chem. Mater. doi: 10.1021/acs.chemmater.1c01947.
  4. Tsutsumi-Arai, C. et al. (2021). Microbicidal effect of 405-nm blue LED light on Candida albicans and Streptococcus mutans dual-species biofilms on denture base resin. Lasers Med Sci. doi: 10.1007/s10103-021-03323-z.
  5. Ng, C.H. et al. (2021). Synthesis, characterization and multiple targeting with selectivity: Anticancer property of ternary metal phenanthroline-maltol complexes. J Inorg Biochem. 220:111453. doi: 10.1016/j.jinorgbio.2021.111453.
  6. Lakshmi, B.A. et al. (2021). Ruthenium(II)-Curcumin Liposome Nanoparticles: synthesis, characterization, and effects against cervical cancer. Colloids Surf B Biointerfaces. doi: 10.1016/j.colsurfb.2021.111773.
  7. Wu, X. et al. (2021). Carboxymethylated chitosan alleviated oxidative stress injury in retinal ganglion cells via IncRNA-THOR/IGF2BP1 axis. Genes Genomics. doi: 10.1007/s13258-021-01085-0.
  8. Nurrahmah, Q.I. et al. (2021). Retinoic acid abrogates LPS-induced inflammatory response via negative regulation of NF-kappa B/miR-21 signaling. Immunopharmacol Immunotoxicol. doi: 10.1080/08923973.2021.1902348.
  9. Dong, H. et al. (2021). Paeoniflorin and Plycyrrhetinic Acid Synergistically Alleviate MPP+/MPTP-Induced Oxidative Stress through Nrf2-Dependent Glutathione Biosynthesis Mechanisms. ACS Chem Neurosci. doi: 10.1021/acschemneuro.0c00544.
  10. Ashibe, S. et al. (2021). Mechanism of the adverse effect of hyaluronidase used for oocyte denudation on early development of bovine embryos. Zygote. doi: 10.1017/S0967199421000010.
  11. Codenotti, S. et al. (2021). Caveolin-1 promotes radioresistance in rhabdomyosarcoma through increased oxidative stress protection and DNA repair. Cancer Lett. doi: 10.1016/j.canlet.2021.02.005.
  12. Lazarova, D. et al. (2021). Quantum Sensors To Track Total Redox-Status and Oxidative Stress in Cells and Tissues Using Electron-Paramagnetic Resonance, Magnetic Resonance Imaging, and Optical Imaging. Anal Chem. doi: 10.1021/acs.analchem.0c04116.
  13. Truman, J.P. et al. (2021). Sphingosine kinase 1 downregulation is required for adaptation to serine deprivation. FASEB J. 35(2):e21284. doi: 10.1096/fj.202001814RR.
  14. Gupta, S. et al. (2021). Glutathione is a potential therapeutic target for acrolein toxicity in the cornea. Toxicol Lett. doi: 10.1016/j.toxlet.2021.01.005.
  15. Hoque, S.A.M. et al. (2020). Adverse effect of superoxide-induced mitochondrial damage in granulosa cells on follicular development in mouse ovaries. Free Radic Biol Med. doi: 10.1016/j.freeradbiomed.2020.12.434.
  16. Pan, W. et al. (2021). Deubiquitinating enzyme USP30 negatively regulates mitophagy and accelerates myocardial cell senescence through antagonism of Parkin. Cell Death Discov. 7(1):187. doi: 10.1038/s41420-021-00546-5.
  17. Kim, E.Y. & Dryer, S.E. (2021). RAGE and αVβ3-integrin are essential for suPAR signaling in podocytes. Biochim Biophys Acta Mol Basis Dis. 1867(10):166186. doi: 10.1016/j.bbadis.2021.166186.
  18. Blagojevic, M. et al. (2021). Candidalysin triggers epithelial cellular stresses that induce necrotic death. Cell Microbiol. doi: 10.1111/cmi.13371.
  19. Chang, M.S. et al. (2021). Study of Ojayeonjonghwan on hydrogen peroxide-induced oxidative stress in male reproductive GC-1 germ cell lines. Herb. Formula Sc. 29(1):1-8. doi: 10.14374/HFS.2021.29.1.1.
  20. Yen, I.C. et al. (2021). 4-Acetylantroquinonol B ameliorates nonalcoholic steatohepatitis by suppression of ER stress and NLRP3 inflammasome activation. Biomed Pharmacother. 138:111504. doi: 10.1016/j.biopha.2021.111504.
  21. Kuhn, M.J. et al. (2021). Vitamin E analogs limit in vitro oxidant damage to bovine mammary endothelial cells. J Dairy Sci. doi: 10.3168/jds.2020-19675.
  22. Nukala, S.B. et al. (2021). Protein network analyses of pulmonary endothelial cells in chronic thromboembolic pulmonary hypertension. Sci Rep. 11(1):5583. doi: 10.1038/s41598-021-85004-z.
  23. Sangweni, N.F. et al. (2021). The triterpene, methyl-3β-hydroxylanosta-9,24-dien-21-oate (RA3), attenuates high glucose-induced oxidative damage and apoptosis by improving energy metabolism. Phytomedicine. doi: 10.1016/j.phymed.2021.153546.
  24. Panchariya, V. et al. (2021). Chromatic intervention and biocompatibility assay for biosurfactant derived from Balanites aegyptiaca (L.) Del. Sci Rep. 11(1):4186. doi: 10.1038/s41598-021-83573-7.
  25. Zhang, L. et al. (2021). microRNA-204 Silencing Reduces Mitochondrial Autophagy and Reactive Oxygen Species Production in a murine Alzheimer's Disease model via the TRPML1-Activated STAT3 Pathway. Mol Ther Nucleic Acids. doi: 10.1016/j.omtn.2021.02.010.
  26. Kinoshita, C. et al. (2021). Inhibition of miR-96-5p in the mouse brain increases glutathione levels by altering NOVA1 expression. Commun Biol. 4(1):182. doi: 10.1038/s42003-021-01706-0.
  27. Buskaran, K. et al. (2021). Anticancer Molecular Mechanism of Protocatechuic Acid Loaded on Folate Coated Functionalized Graphene Oxide Nanocomposite Delivery System in Human Hepatocellular Carcinoma. Materials (Basel). 14(4):817. doi: 10.3390/ma14040817.
  28. Moon, I.J. et al. (2021). Ursodeoxycholic Acid May Inhibit Environmental Aging-Associated Hyperpigmentation. Antioxidants (Basel). 10(2):267. doi: 10.3390/antiox10020267.
  29. Dong, S. et al. (2021). Leukemia inhibitory factor protects photoreceptor cone cells against oxidative damage through activating JAK/STAT3 signaling. Ann Transl Med. 9(2):152. doi: 10.21037/atm-20-8040.
  30. Gauthier, A.G. et al. (2021). The Positive Allosteric Modulation of alpha7-Nicotinic Cholinergic Receptors by GAT107 Increases Bacterial Lung Clearance in Hyperoxic Mice by Decreasing Oxidative Stress in Macrophages. Antioxidants (Basel). 10(1):135. doi: 10.3390/antiox10010135.