Intracellular ROS Assay

Intracellular ROS Assay
  • Quick ~1 hour protocol
  • Highly sensitive to 10 pM
  • Detects the presence of various ROS species

 

Frequently Asked Questions about this product

General FAQs about Oxidative Stress

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

OxiSelect™ Intracellular ROS Assay Kit (Green Fluorescence)
Catalog Number
STA-342
Size
96 Assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$520.00
OxiSelect™ Intracellular ROS Assay Kit (Green Fluorescence)
Catalog Number
STA-342-5
Size
5 x 96 Assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$2,215.00
OxiSelect™ Intracellular ROS Assay Kit (Green Fluorescence), Trial Size
Catalog Number
STA-342-T
Size
20 assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$260.00
Product Details

The OxiSelect™ ROS Assay Kit is a cell-based assay for measuring hydroxyl, peroxyl, and other reactive oxygen species activity within a cell. The assay employs the cell-permeable fluorogenic probe DCFH-DA, which diffuses into cells and is deacetylcated by cellular esterases into the non-fluorescent DCFH (Figure 1). In the presence of ROS, DCFH is rapidly oxidized to highly fluorescent DCF. Fluorescence is read on a standard fluorometric plate reader.

Assay Principle.

ROS in HeLa Cells Treated with Hydrogen Peroxide. 50,000 HeLa cells in a 96-well plate were pretreated with 1 mM DCFH-DA for 60 minutes at 37ºC. Cells were then treated with hydrogen peroxide for 20 minutes.

Recent Product Citations
  1. Mulenos, M.R. et al. (2020). Copper, silver, and titania nanoparticles do not release ions under anoxic conditions and release only minute ion levels under oxic conditions in water: Evidence for the low toxicity of nanoparticles. Environ Chem Lett. doi: 10.1007/s10311-020-00985-z.
  2. Di Sante, G. et al. (2020). The S100B Inhibitor Pentamidine Ameliorates Clinical Score and Neuropathology of Relapsing-Remitting Multiple Sclerosis Mouse Model. Cells. 9(3). pii: E748. doi: 10.3390/cells9030748.
  3. Watanabe, Y. et al. (2020). Protein S-glutathionylation stimulate adipogenesis by stabilizing C/EBPβ in 3T3L1 cells. FASEB J. doi: 10.1096/fj.201902575R.
  4. Zhiping, H. et al. (2020). EBN Lower Oxidative Stress: Lactoferrin and Ovotransferrin Contribute toward Antioxidative Effects of Edible Bird’s Nest Against Hydrogen Peroxide-Induced Oxidative Stress in Human SH-SY5Y Cells. Appl Cell Biol. 8(1):1-10.
  5. Dludla, P.V. et al. (2020). Fermented rooibos extract attenuates hyperglycemia-induced myocardial oxidative damage by improving mitochondrial energetics and intracellular antioxidant capacity. South African Journal of Botany. 131:143-150. doi: 10.1016/j.sajb.2020.02.003.
  6. Wu, W. et al. (2020). Lipid Peroxidation Plays an Important Role in Chemotherapeutic Effects of Temozolomide and the Development of Therapy Resistance in Human Glioblastoma. Transl Oncol. 13(3):100748. doi: 10.1016/j.tranon.2020.100748.
  7. Mavangira, V. et al. (2020). 20-hydroxyeicosatetraenoic acid alters endothelial cell barrier integrity independent of oxidative stress and cell death. Prostaglandins Other Lipid Mediat. doi: 10.1016/j.prostaglandins.2020.106425.
  8. Patel, V. et al. (2020). Dietary Antioxidants Significantly Attenuate Hyperoxia-Induced Acute Inflammatory Lung Injury by Enhancing Macrophage Function via Reducing the Accumulation of Airway HMGB1. Int J Mol Sci. 21(3). pii: E977. doi: 10.3390/ijms21030977.
  9. Kiyonaga, N. et al. (2020). Effects of dexmedetomidine on lipopolysaccharide-induced acute kidney injury in rats and mitochondrial function in cell culture. Biomed Pharmacother. 125:109912. doi: 10.1016/j.biopha.2020.109912.
  10. Kurokawa, Y. et al. (2020). The Radical Scavenger NZ-419 Suppresses Intestinal Polyp Development in Apc-Mutant Mice. J Clin Med. 9(1). pii: E270. doi: 10.3390/jcm9010270.
  11. Chen, T.C. et al. (2020). The antagonism of 6-shogaol in high-glucose-activated NLRP3 inflammasome and consequent calcification of human artery smooth muscle cells. Cell Biosci. 10:5. doi: 10.1186/s13578-019-0372-1.
  12. Shiratori, T. et al. (2019). Phagocytosis-like cell engulfment by a planctomycete bacterium. Nat Commun. 10(1):5529. doi: 10.1038/s41467-019-13499-2.
  13. Johnson, R. et al. (2019). An In Vitro Study on the Combination Effect of Metformin and N-Acetyl Cysteine against Hyperglycaemia-Induced Cardiac Damage. Nutrients. 11(12). pii: E2850. doi: 10.3390/nu11122850.
  14. Zaulkffali, A.S. et al. (2019). Vitamins D and E Stimulate the PI3K-AKT Signalling Pathway in Insulin-Resistant SK-N-SH Neuronal Cells. Nutrients. 11(10). pii: E2525. doi: 10.3390/nu11102525.
  15. Morita, K. et al. (2019). Repression of mitochondrial metabolism for cytosolic pyruvate-derived chemical production in Saccharomyces cerevisiae. Microb Cell Fact. 18(1):177. doi: 10.1186/s12934-019-1226-6.
  16. Khan, M.S. et al. (2019). Anti-Tumor Drug-Loaded Oxygen Nanobubbles for the Degradation of HIF-1α and the Upregulation of Reactive Oxygen Species in Tumor Cells. Cancers (Basel). 11(10). pii: E1464. doi: 10.3390/cancers11101464.
  17. Raez-Villanueva, S. et al. (2019). Adverse effects of naphthenic acids on reproductive health: a focus on placental trophoblast cells. Reprod Toxicol. pii: S0890-6238(19)30313-2. doi: 10.1016/j.reprotox.2019.09.002.
  18. Chelakkot, V.S. et al. (2019). Systemic MEK inhibition enhances the efficacy of 5-aminolevulinic acid-photodynamic therapy. Br J Cancer. doi: 10.1038/s41416-019-0586-3.
  19. Lund, J. et al. (2019). Increased Glycolysis and Higher Lactate Production in Hyperglycemic Myotubes. Cells. 8(9). pii: E1101. doi: 10.3390/cells8091101.
  20. Varol, M. (2019). Parietin as an efficient and promising anti-angiogenic and apoptotic small-molecule from Xanthoria parietina. Revista Brasileira de Farmacognosia. doi:10.1016/j.bjp.2019.04.012.
  21. Aggarwal, A. et al. (2019). Ketogenic diet combined with antioxidant N-acetylcysteine inhibits tumor growth in a mouse model of anaplastic thyroid cancer. Surgery. pii: S0039-6060(19)30458-1. doi: 10.1016/j.surg.2019.06.042.
  22. Varol, M. et al. (2019). Photodynamic Therapy Assay. Methods Mol Biol. doi: 10.1007/7651_2019_260.
  23. Desmonts de Lamache, D. et al. (2019). Immuno-modulating properties of Tulathromycin in porcine monocyte-derived macrophages infected with porcine reproductive and respiratory syndrome virus. PLoS One. 14(8):e0221560. doi: 10.1371/journal.pone.0221560.
  24. Schuster, J. et al. (2019). Transcriptomes of Dravet syndrome iPSC derived GABAergic cells reveal dysregulated pathways for chromatin remodeling and neurodevelopment. Neurobiol Dis. doi: 10.1016/j.nbd.2019.104583.
  25. Miyauchi, A. et al. (2019). Apomorphine rescues reactive oxygen species-induced apoptosis of fibroblasts with mitochondrial disease. Mitochondrion. pii: S1567-7249(19)30002-9. doi: 10.1016/j.mito.2019.07.006.
  26. Lakshmi, B.A. et al. (2019). Nanoclusters prepared from ruthenium(II) and quercetin for fluorometric detection of cobalt(II), and a method for screening their anticancer drug activity. Mikrochim Acta. 186(8):539. doi: 10.1007/s00604-019-3657-5.
  27. Anantha Lakshmi, B. et al. (2019). Facile design and spectroscopic characterization of novel bio-inspired Quercetin-conjugated Tetrakis (dimethylsulfoxide)dichlororuthenium(II) complex for enhanced anticancer properties. Inorganica Chimica Acta. 118989. doi:10.1016/j.ica.2019.118989.
  28. Ruan, D. et al. (2019). miR-149-5p protects against high glucose-induced pancreatic beta cell apoptosis via targeting the BH3-only protein BIM. Exp Mol Pathol. 104279. doi: 10.1016/j.yexmp.2019.104279.
  29. Al-Sharqi, A. et al. (2019). Enhancement of the Antibacterial Efficiency of Silver Nanoparticles against Gram-Positive and Gram-Negative Bacteria Using Blue Laser Light. International Journal of Photoenergy. doi: 10.1155/2019/2528490.
  30. Chen, L. et al. (2019). Pinealectomy or light exposure exacerbates biliary damage and liver fibrosis in cholestatic rats through decreased melatonin synthesis. Biochim Biophys Acta Mol Basis Dis. pii: S0925-4439(19)30076-6. doi: 10.1016/j.bbadis.2019.03.002.