Total Antioxidant Capacity (TAC) Assay

Total Antioxidant Capacity (TAC) Assay
  • Measures total antioxidant capacity based on reduction of copper(II) to copper(I)
  • Suitable for use with plasma, serum, urine, cell lysates, tissue homogenates and food extracts
  • Works with a wide variety of antioxidants


Frequently Asked Questions about this product

General FAQs about Oxidative Stress

Email To BuyerPrint this PageCopy Link

Please contact your distributor for pricing.

OxiSelect™ Total Antioxidant Capacity (TAC) Assay Kit
Catalog Number
200 assays
Manual/Data Sheet Download
SDS Download
OxiSelect™ Total Antioxidant Capacity (TAC) Assay Kit, Trial Size
Catalog Number
20 assays
Manual/Data Sheet Download
SDS Download
Product Details

The OxiSelect™ Total Antioxidant Capacity (TAC) Assay measures the total antioxidant capacity of biomolecules from a variety of samples via a SET mechanism. In the presence of antioxidants, copper(II) is reduced to copper(I). In turn, the copper(I) ions react with a chromogen to produce a color with maximum absorbance at 490nm.

TAC Assay Principle.

TAC Assay Standard Curve.

TAC Assay Measurement with Various Antioxidants.

Recent Product Citations
  1. Cui, G. et al. (2020). Serum Metabolomic Profiling Based on FT-ICR-MS: Do the Dysfunctions of Metabolic Pathways Reveal a Universal Risk of Oxidative Stress in Schizophrenia?. Antioxid Redox Signal. doi: 10.1089/ars.2020.8141.
  2. Levy, O. et al. (2020). Artificial light at night (ALAN) alters the physiology and biochemistry of symbiotic reef building corals. Environ. Pollut. doi: 10.1016/j.envpol.2020.114987.
  3. Cruz-Chamorro, I. et al. (2020). Immunomodulatory and Antioxidant Properties of Wheat Gluten Protein Hydrolysates in Human Peripheral Blood Mononuclear Cells. Nutrients. 12(6):E1673. doi: 10.3390/nu12061673.
  4. Catalán-García, M. et al. (2020). Mitochondrial Dysfunction: A Common Hallmark Underlying Comorbidity between sIBM and Other Degenerative and Age-Related Diseases. J Clin Med. 9(5):E1446. doi: 10.3390/jcm9051446.
  5. Hidalgo, J. et al. (2020). Effect of salinity acclimation on osmoregulation, oxidative stress, and metabolic enzymes in the invasive Xenopus laevis. J Exp Zool A Ecol Integr Physiol. doi: 10.1002/jez.2360.
  6. Giller, K. et al. (2020). Effects of mixed essential oils from eucalyptus, thyme and anise on composition, coagulation properties and antioxidant capacity of the milk of dairy cows. J. Anim. Feed Sci. 29(1):3–10. doi: 10.22358/jafs/118208/2020.
  7. Silva-Guillen, Y.V. et al. (2020). Growth performance, oxidative stress and immune status of newly weaned pigs fed peroxidized lipids with or without supplemental vitamin E or polyphenols. J Animal Sci Biotechnol. 11:22 . doi: 10.1186/s40104-020-0431-9.
  8. Ward, L.J. et al. (2020). Does resistance training have an effect on levels of ferritin and atherogenic lipids in postmenopausal women? - A pilot trial. Sci Rep. 10(1):3838. doi: 10.1038/s41598-020-60759-z.
  9. Shanmugam, G. et al. (2020). Reductive Stress Causes Pathological Cardiac Remodeling and Diastolic Dysfunction. Antioxid Redox Signal. doi: 10.1089/ars.2019.7808.
  10. Zhao, Y. et al. (2020). Overexpression of endogenous lipoic acid synthase attenuates pulmonary fibrosis induced by crystalline silica in mice. Toxicol Lett. pii: S0378-4274(20)30031-X. doi: 10.1016/j.toxlet.2020.01.023.
  11. Palani, A. et al. (2020). Geographical differences in semen characteristics: Comparing semen parameters of infertile men of the United States and Iraq. Andrologia. doi: 10.1111/and.13519.
  12. Michałek, M. et al. (2020). Antioxidant defence and oxidative stress markers in cats with asymptomatic and symptomatic hypertrophic cardiomyopathy: a pilot study. BMC Vet Res. 16(1):26. doi: 10.1186/s12917-020-2256-3.
  13. Casós, K. et al. (2020). Determination of Redox Status in Serum. Methods Mol Biol. 2110:115-128. doi: 10.1007/978-1-0716-0255-3_8.
  14. Chiumia, D. et al. (2019). Alpine and lowland grazing differentially alter the reproductive tract redox milieu and amino acid composition in cattle. Anim Reprod Sci. doi: 10.1016/j.anireprosci.2019.106268.
  15. Altaany, Z. et al. (2019). Evaluation of antioxidant status and oxidative stress markers in thermal sulfurous springs residents. Heliyon. 5(11):e02885. doi: 10.1016/j.heliyon.2019.e02885.
  16. Jain, S. et al. (2019). Saliva panel of protein candidates: A comprehensive study for assessing high altitude acclimatization. Nitric Oxide. 95:1-11. doi: 10.1016/j.niox.2019.11.007.
  17. Satpathy, S. et al. (2019). Process optimization for green synthesis of gold nanoparticles mediated by extract of Hygrophila spinosa T. Anders and their biological applications. Physica E Low Dimens Syst Nanostruct. doi: 10.1016/j.physe.2019.113830.
  18. Waly, N.E. et al. (2019). Chemical fingerprint of Bacopa monnieri L. and Rosmarinus officinalis L. and their neuroprotective activity against Alzheimer's disease in rat model’s putative modulation via cholinergic and monoaminergic pathways. J. Med. Plants Res. 13(11):252-268. doi: 10.5897/JMPR2018.6728.
  19. Pandey, S. et al. (2019). The msaABCR operon regulates the response to oxidative stress in Staphylococcus aureus. J Bacteriol. pii: JB.00417-19. doi: 10.1128/JB.00417-19.
  20. Liu, H.T. et al. (2019). Nanoparticulated Honokiol Mitigates Cisplatin-Induced Chronic Kidney Injury by Maintaining Mitochondria Antioxidant Capacity and Reducing Caspase 3-Associated Cellular Apoptosis. Antioxidants (Basel). 8(10). pii: E466. doi: 10.3390/antiox8100466.
  21. Aoki, M. et al. (2019). Obesity-associated insulin resistance adversely affects skin function. PLoS One. 14(10):e0223528. doi: 10.1371/journal.pone.0223528.
  22. Boyer-Diaz,  Z. et al. (2019). A Nutraceutical Rich in Docosahexaenoic Acid Improves Portal Hypertension in a Preclinical Model of Advanced Chronic Liver Disease. Nutrients. 11(10):2358. doi: 10.3390/nu11102358.
  23. Kelek, S.E. et al. (2019). Effect of chronic L-carnitine supplementation on carnitine levels, oxidative stress and apoptotic markers in peripheral organs of adult Wistar rats. Food Chem Toxicol. doi: 10.1016/j.fct.2019.110851.
  24. Ayalon, I. et al. (2019). Red Sea corals under Artificial Light Pollution at Night (ALAN) undergo oxidative stress and photosynthetic impairment. Glob Chang Biol. doi: 10.1111/gcb.14795.
  25. Williams, L. et al. (2019). N-acetylcysteine resolves placental inflammatory-vasculopathic changes in mice consuming a high fat diet. Am J Pathol. pii: S0002-9440(19)30666-2. doi: 10.1016/j.ajpath.2019.07.010.
  26. Wang, S. et al. (2019). Effect of supplementation of pelleted hazel (Corylus avellana) leaves on blood antioxidant activity, cellular immune response and heart beat parameters in sheep. Journal of Animal Science. doi: 10.1093/jas/skz288.
  27. Karagenç, N. et al. (2019). Transfer of mouse blastocysts exposed to ambient oxygen levels can lead to impaired lung development and redox balance. Molecular Human Reproduction. doi: 10.1093/molehr/gaz052.
  28. Arafa, M.H. et al. (2019). Protective Role of Epigallocatechin Gallate in a Rat Model of Cisplatin-Induced Cerebral Inflammation and Oxidative Damage: Impact of Modulating NF-κB and Nrf2. Neurotox Res. doi: 10.1007/s12640-019-00095-x.
  29. Palungwachira, P. et al. (2019). Antioxidant and Anti-Inflammatory Properties of Anthocyanins Extracted from Oryza sativa L. in Primary Dermal Fibroblasts. Oxidative Medicine and Cellular Longevity. doi: 10.1155/2019/2089817.
  30. Marangoni, L. F. de B. et al. (2019). Oxidative stress biomarkers as potential tools in reef degradation monitoring: A study case in a South Atlantic reef under influence of the 2015–2016 El Niño/Southern Oscillation (ENSO). Ecological Indicators. 106:105533. doi: 10.1016/j.ecolind.2019.105533.