Hydroxyl Radical Antioxidant Capacity (HORAC) Assay

Hydroxyl Radical Antioxidant Capacity (HORAC) Assay
  • Obtain results in less than 2 hours
  • Suitable for use with plasma, cell fractions, tissue lysates, solid and aqueous nutrition samples
  • Antioxidant standard included

 

Frequently Asked Questions about this product

General FAQs about Oxidative Stress

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

OxiSelect™ HORAC Activity Assay Kit
Catalog Number
STA-346
Size
192 assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$465.00
OxiSelect™ HORAC Activity Assay Kit
Catalog Number
STA-346-5
Size
5 x 192 assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$1,975.00
OxiSelect™ HORAC Activity Assay Kit, Trial Size
Catalog Number
STA-346-T
Size
48 assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$235.00
Product Details

The HORAC assay is a powerful tool to measure the antioxidant capacity of biomolecules. Our OxiSelect™ HORAC Activity Assay measures the degradation of free hydroxyl radicals in less than 2 hours from a wide variety of sample types.

Assay Principle for the OxiSelect™ HORAC Activity Assay. Please see product manual for detailed calculations.

Recent Product Citations
  1. Rosenkrans, Z.T. et al. (2020). Selenium‐Doped Carbon Quantum Dots Act as Broad‐Spectrum Antioxidants for Acute Kidney Injury Management. Adv. Sci. doi: 10.1002/advs.202000420.
  2. Pham, T.N.M. et al. (2020). Protective Mechanisms of Avocado Oil Extract Against Ototoxicity. Nutrients. 12(4). pii: E947. doi: 10.3390/nu12040947.
  3. Ansar, M. et al. (2020). Increased Lung Catalase Activity Confers Protection Against Experimental RSV Infection. Sci Rep. 10(1):3653. doi: 10.1038/s41598-020-60443-2.
  4. Xin, H. et al. (2019).  Attenuated glutamate induced ROS production by antioxidative compounds in neural cell lines. RSC Adv. 9:34735–34743. doi: 10.1039/c9ra03848e.
  5. Li, S. et al. (2019). Intrathecal Administration of Nanoclusters for Protecting Neurons against Oxidative Stress in Cerebral Ischemia/Reperfusion Injury. ACS Nano. doi: 10.1021/acsnano.9b06780.
  6. Choi, B. et al. (2019). Highly selective microglial uptake of ceria-zirconia nanoparticles for enhanced analgesic treatment of neuropathic pain. Nanoscale. doi: 10.1039/c9nr02648g.
  7. Gardner, A.W. et al. (2019). Vascular Inflammation, Calf Muscle Oxygen Saturation, and Blood Glucose are Associated With Exercise Pressor Response in Symptomatic Peripheral Artery Disease. Angiology. 3319719838399. doi: 10.1177/0003319719838399.
  8. Gardner, A.W. et al. (2019). Changes in vascular and inflammatory biomarkers after exercise rehabilitation in patients with symptomatic peripheral artery disease. J Vasc Surg. pii: S0741-5214(19)30222-8. doi: 10.1016/j.jvs.2018.12.056.
  9. Jiang, D. et al. (2018). DNA origami nanostructures can exhibit preferential renal uptake and alleviate acute kidney injury. Nat Biomed Eng. 2(11):865-877. doi: 10.1038/s41551-018-0317-8.
  10. Ni, D. et al. (2018). Molybdenum-based nanoclusters act as antioxidants and ameliorate acute kidney injury in mice. Nat Commun. 9(1):5421. doi: 10.1038/s41467-018-07890-8.
  11. Ortecho-Zuta, U. et al. (2018). Effects of Enzymatic Activation of Bleaching Gels on Hydrogen Peroxide Degradation Rates, Bleaching Effectiveness, and Cytotoxicity. Oper Dent. doi: 10.2341/17-276-L.
  12. Gregory Rivera, M. et al. (2018). Peptide Inhibitor of Complement C1 (PIC1) demonstrates antioxidant activity via single electron transport (SET) and hydrogen atom transfer (HAT). PLoS One. 13(3):e0193931. doi: 10.1371/journal.pone.0193931.
  13. Molinari, R. et al. (2018). Tartary buckwheat malt as ingredient of gluten-free cookies. Journal of Cereal Science. 80:37-43. doi: 10.1016/j.jcs.2017.11.011.
  14. Oraby, H.F. et al. (2017). Changes in the concentration of avenanthramides in response to salinity stress in CBF 3 transgenic oat. J. Cereal Sci. doi: 10.1016/j.jcs.2017.06.010.
  15. Gardner, A.W. et al. (2017). Association between daily walking and antioxidant capacity in patients with symptomatic peripheral artery disease. J Vasc Surg. pii: S0741-5214(17)30098-8. doi: 10.1016/j.jvs.2016.12.108.
  16. Gardner, A. W. et al. (2016). Association between gait characteristics and endothelial oxidative stress and inflammation in patients with symptomatic peripheral artery disease. AGE (Dordr). doi:10.1007/s11357-016-9925-y.
  17. Jeong, M. H. et al. (2014). In vitro evaluation of Cordyceps militaris as a potential radioprotective agent. Int J Mol Med. 34:1349-1357.
  18. Mishra, S. et al. (2014). Semiquinone glucoside derivative (SQGD) isolated from Bacillus sp. INM-1 protects against gamma radiation-induced oxidative stress. Environ Toxicol Pharmacol.  37:553-562.
  19. Gardner, A. W. et al. (2014). Gender and racial differences in endothelial oxidative stress and inflammation in patients with symptomatic peripheral artery disease. J Vasc Surg. 61:1249-1257.
  20. Gardner, A. W. et al. (2014). Greater endothelial apoptosis and oxidative stress in patients with peripheral artery disease. Int J Vasc Med. doi:10.1155/2014/160534.
  21. Gardner, A. W. et al. (2014).  Impaired Vascular Endothelial Growth Factor A and Inflammation in Patients with Peripheral Artery Disease. Angiology. 65:683-690.
  22. Jeong, M.H. et al. (2014).  Protective Activity of a Novel Resveratrol Analogue, HS-1793, Against DNA Damage in 137Cs-Irradiated CHO-K1 Cells.  J Radiat Res. 55:464-475.
  23. J, M.H. et al. (2014). Protective Activity of a Novel Resveratrol Analogue, HS-1793, Against DNA Damage in 137Cs-Irradiated CHO-K1 Cells. J Radiat Res. 10.1093/hmg/ddt662.
  24. Gardner, A. et al. (2013). Impaired Vascular Endothelial Growth Factor A and Inflammation in Patients With Peripheral Artery Disease. Angiology. 10.1177/0003319713501376.
  25. Bailey-Downs. et al. (2013). Aging Exacerbates Obesity-Induced Oxidative Stress and Inflammation in Perivascular Adipose Tissue in Mice: A Paracrine Mechanism Contributing to Vascular Redox Dysregulation and Inflammation. J Gerontol A Biol Sci Med Sci. 68:780-792.
  26. Ungvari, Z. et al. (2013). Testing Predictions of the Oxidative Stress Hypothesis of Aging Using a Novel Invertebrate Model of Longevity: The Giant Clam (Tridacna Derasa). J Gerontol A Biol Sci Med Sci. 68:359-367.
  27. Downs, L.C. et al. (2012). Aging Exacerbates Obesity-Induced Oxidative Stress and Inflammation in Perivascular Adipose Tissue in Mice: A Paracrine Mechanism Contributing to Vascular Redox Dysregulation and Inflammation. J Gerontol A Biol Sci Med Sci. 10.1093/gerona/ gls238.
  28. Bailey-Downs, L.C. et al. (2011). Liver-Specific Knockdown of IGF-1 Decreases Vascular Oxidative Stress Resistance by Impairing the Nrf2-Dependent Antioxidant Response: A Novel Model of Vascular Aging. J. Gerontol A Biol Sci Med Sci. 67A:313-329.
  29. Ungvari, Z. et al. (2011). Extreme Longevity Is Associated With Increased Resistance to Oxidative Stress in Arctica islandica, the Longest-Living Non-Colonial Animal. J. Gerontol A Biol Sci Med Sci. 10.1093/gerona/glr044
  30. Ungvari, Z. et al. (2011). Free Radical Production, Antioxidant Capacity, and Oxidative Stress Response Signatures in Fibroblasts from Lewis Dwarf Rats: Effects of Life Span-Extending Peripubertal GH Treatment. J. Gerontol. A Biol Sci Med Sci. 10.1093/gerona/glr004.